--- base_model: distilbert-base-uncased library_name: peft license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-lora-text-classification results: [] --- # distilbert-base-uncased-lora-text-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9725 - Accuracy: {'accuracy': 0.891} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------:| | No log | 1.0 | 250 | 0.4241 | {'accuracy': 0.872} | | 0.4269 | 2.0 | 500 | 0.5036 | {'accuracy': 0.861} | | 0.4269 | 3.0 | 750 | 0.5352 | {'accuracy': 0.892} | | 0.1965 | 4.0 | 1000 | 0.8070 | {'accuracy': 0.878} | | 0.1965 | 5.0 | 1250 | 0.7119 | {'accuracy': 0.89} | | 0.0751 | 6.0 | 1500 | 0.7886 | {'accuracy': 0.89} | | 0.0751 | 7.0 | 1750 | 0.9721 | {'accuracy': 0.885} | | 0.0192 | 8.0 | 2000 | 0.9711 | {'accuracy': 0.883} | | 0.0192 | 9.0 | 2250 | 0.9572 | {'accuracy': 0.894} | | 0.0184 | 10.0 | 2500 | 0.9725 | {'accuracy': 0.891} | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.2 - Pytorch 2.1.2+cpu - Datasets 2.20.0 - Tokenizers 0.19.1