#!/usr/bin/env python # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import copy import gc import hashlib import logging import math import os import random import shutil from contextlib import nullcontext from pathlib import Path import numpy as np import pandas as pd import torch import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed from huggingface_hub import create_repo, upload_folder from peft import LoraConfig, set_peft_model_state_dict from peft.utils import get_peft_model_state_dict from PIL import Image from PIL.ImageOps import exif_transpose from torch.utils.data import Dataset from torchvision import transforms from torchvision.transforms.functional import crop from tqdm.auto import tqdm import diffusers from diffusers import ( AutoencoderKL, FlowMatchEulerDiscreteScheduler, SD3Transformer2DModel, StableDiffusion3Pipeline, ) from diffusers.optimization import get_scheduler from diffusers.training_utils import ( cast_training_params, compute_density_for_timestep_sampling, compute_loss_weighting_for_sd3, ) from diffusers.utils import ( check_min_version, convert_unet_state_dict_to_peft, is_wandb_available, ) from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card from diffusers.utils.torch_utils import is_compiled_module if is_wandb_available(): import wandb # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.30.0.dev0") logger = get_logger(__name__) def save_model_card( repo_id: str, images=None, base_model: str = None, train_text_encoder=False, instance_prompt=None, validation_prompt=None, repo_folder=None, ): widget_dict = [] if images is not None: for i, image in enumerate(images): image.save(os.path.join(repo_folder, f"image_{i}.png")) widget_dict.append( {"text": validation_prompt if validation_prompt else " ", "output": {"url": f"image_{i}.png"}} ) model_description = f""" # SD3 DreamBooth LoRA - {repo_id} ## Model description These are {repo_id} DreamBooth weights for {base_model}. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: {train_text_encoder}. ## Trigger words You should use {instance_prompt} to trigger the image generation. ## Download model [Download]({repo_id}/tree/main) them in the Files & versions tab. ## License Please adhere to the licensing terms as described [here](https://huggingface.co/stabilityai/stable-diffusion-3-medium/blob/main/LICENSE). """ model_card = load_or_create_model_card( repo_id_or_path=repo_id, from_training=True, license="openrail++", base_model=base_model, prompt=instance_prompt, model_description=model_description, widget=widget_dict, ) tags = [ "text-to-image", "diffusers-training", "diffusers", "lora", "sd3", "sd3-diffusers", "template:sd-lora", ] model_card = populate_model_card(model_card, tags=tags) model_card.save(os.path.join(repo_folder, "README.md")) def log_validation( pipeline, args, accelerator, pipeline_args, epoch, is_final_validation=False, ): logger.info( f"Running validation... \n Generating {args.num_validation_images} images with prompt:" f" {args.validation_prompt}." ) pipeline.enable_model_cpu_offload() pipeline.set_progress_bar_config(disable=True) # run inference generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None # autocast_ctx = torch.autocast(accelerator.device.type) if not is_final_validation else nullcontext() autocast_ctx = nullcontext() with autocast_ctx: images = [pipeline(**pipeline_args, generator=generator).images[0] for _ in range(args.num_validation_images)] for tracker in accelerator.trackers: phase_name = "test" if is_final_validation else "validation" if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images(phase_name, np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { phase_name: [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) del pipeline if torch.cuda.is_available(): torch.cuda.empty_cache() return images def parse_args(input_args=None): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--variant", type=str, default=None, help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", ) parser.add_argument( "--instance_data_dir", type=str, default=None, help=("A folder containing the training data. "), ) parser.add_argument( "--data_df_path", type=str, default=None, help=("Path to the parquet file serialized with compute_embeddings.py."), ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument( "--instance_prompt", type=str, default=None, required=True, help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'", ) parser.add_argument( "--max_sequence_length", type=int, default=77, help="Maximum sequence length to use with with the T5 text encoder", ) parser.add_argument( "--validation_prompt", type=str, default=None, help="A prompt that is used during validation to verify that the model is learning.", ) parser.add_argument( "--num_validation_images", type=int, default=4, help="Number of images that should be generated during validation with `validation_prompt`.", ) parser.add_argument( "--validation_epochs", type=int, default=50, help=( "Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`." ), ) parser.add_argument( "--rank", type=int, default=4, help=("The dimension of the LoRA update matrices."), ) parser.add_argument( "--output_dir", type=str, default="sd3-dreambooth-lora", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--random_flip", action="store_true", help="whether to randomly flip images horizontally", ) parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--lr_num_cycles", type=int, default=1, help="Number of hard resets of the lr in cosine_with_restarts scheduler.", ) parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument( "--weighting_scheme", type=str, default="logit_normal", choices=["sigma_sqrt", "logit_normal", "mode", "cosmap"], ) parser.add_argument( "--logit_mean", type=float, default=0.0, help="mean to use when using the `'logit_normal'` weighting scheme." ) parser.add_argument( "--logit_std", type=float, default=1.0, help="std to use when using the `'logit_normal'` weighting scheme." ) parser.add_argument( "--mode_scale", type=float, default=1.29, help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.", ) parser.add_argument( "--optimizer", type=str, default="AdamW", help=('The optimizer type to use. Choose between ["AdamW"]'), ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW", ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params") parser.add_argument( "--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.", ) parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--prior_generation_precision", type=str, default=None, choices=["no", "fp32", "fp16", "bf16"], help=( "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") if input_args is not None: args = parser.parse_args(input_args) else: args = parser.parse_args() if args.instance_data_dir is None: raise ValueError("Specify `instance_data_dir`.") env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank return args class DreamBoothDataset(Dataset): """ A dataset to prepare the instance and class images with the prompts for fine-tuning the model. It pre-processes the images. """ def __init__( self, data_df_path, instance_data_root, instance_prompt, size=1024, center_crop=False, ): # Logistics self.size = size self.center_crop = center_crop self.instance_prompt = instance_prompt self.instance_data_root = Path(instance_data_root) if not self.instance_data_root.exists(): raise ValueError("Instance images root doesn't exists.") # Load images. instance_images = [Image.open(path) for path in list(Path(instance_data_root).iterdir())] image_hashes = [self.generate_image_hash(path) for path in list(Path(instance_data_root).iterdir())] self.instance_images = instance_images self.image_hashes = image_hashes # Image transformations self.pixel_values = self.apply_image_transformations( instance_images=instance_images, size=size, center_crop=center_crop ) # Map hashes to embeddings. self.data_dict = self.map_image_hash_embedding(data_df_path=data_df_path) self.num_instance_images = len(instance_images) self._length = self.num_instance_images def __len__(self): return self._length def __getitem__(self, index): example = {} instance_image = self.pixel_values[index % self.num_instance_images] image_hash = self.image_hashes[index % self.num_instance_images] prompt_embeds, pooled_prompt_embeds = self.data_dict[image_hash] example["instance_images"] = instance_image example["prompt_embeds"] = prompt_embeds example["pooled_prompt_embeds"] = pooled_prompt_embeds return example def apply_image_transformations(self, instance_images, size, center_crop): pixel_values = [] train_resize = transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR) train_crop = transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size) train_flip = transforms.RandomHorizontalFlip(p=1.0) train_transforms = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) for image in instance_images: image = exif_transpose(image) if not image.mode == "RGB": image = image.convert("RGB") image = train_resize(image) if args.random_flip and random.random() < 0.5: # flip image = train_flip(image) if args.center_crop: y1 = max(0, int(round((image.height - args.resolution) / 2.0))) x1 = max(0, int(round((image.width - args.resolution) / 2.0))) image = train_crop(image) else: y1, x1, h, w = train_crop.get_params(image, (args.resolution, args.resolution)) image = crop(image, y1, x1, h, w) image = train_transforms(image) pixel_values.append(image) return pixel_values def convert_to_torch_tensor(self, embeddings: list): prompt_embeds = embeddings[0] pooled_prompt_embeds = embeddings[1] prompt_embeds = np.array(prompt_embeds).reshape(154, 4096) pooled_prompt_embeds = np.array(pooled_prompt_embeds).reshape(2048) return torch.from_numpy(prompt_embeds), torch.from_numpy(pooled_prompt_embeds) def map_image_hash_embedding(self, data_df_path): hashes_df = pd.read_parquet(data_df_path) data_dict = {} for i, row in hashes_df.iterrows(): embeddings = [row["prompt_embeds"], row["pooled_prompt_embeds"]] prompt_embeds, pooled_prompt_embeds = self.convert_to_torch_tensor(embeddings=embeddings) data_dict.update({row["image_hash"]: (prompt_embeds, pooled_prompt_embeds)}) return data_dict def generate_image_hash(self, image_path): with open(image_path, "rb") as f: img_data = f.read() return hashlib.sha256(img_data).hexdigest() def collate_fn(examples): pixel_values = [example["instance_images"] for example in examples] prompt_embeds = [example["prompt_embeds"] for example in examples] pooled_prompt_embeds = [example["pooled_prompt_embeds"] for example in examples] pixel_values = torch.stack(pixel_values) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() prompt_embeds = torch.stack(prompt_embeds) pooled_prompt_embeds = torch.stack(pooled_prompt_embeds) batch = { "pixel_values": pixel_values, "prompt_embeds": prompt_embeds, "pooled_prompt_embeds": pooled_prompt_embeds, } return batch def main(args): if args.report_to == "wandb" and args.hub_token is not None: raise ValueError( "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." " Please use `huggingface-cli login` to authenticate with the Hub." ) if torch.backends.mps.is_available() and args.mixed_precision == "bf16": # due to pytorch#99272, MPS does not yet support bfloat16. raise ValueError( "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." ) logging_dir = Path(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, kwargs_handlers=[kwargs], ) # Disable AMP for MPS. if torch.backends.mps.is_available(): accelerator.native_amp = False if args.report_to == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, ).repo_id # Load scheduler and models noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( args.pretrained_model_name_or_path, subfolder="scheduler" ) noise_scheduler_copy = copy.deepcopy(noise_scheduler) vae = AutoencoderKL.from_pretrained( args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant, ) transformer = SD3Transformer2DModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="transformer", revision=args.revision, variant=args.variant ) transformer.requires_grad_(False) vae.requires_grad_(False) # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora transformer) to half-precision # as these weights are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16: # due to pytorch#99272, MPS does not yet support bfloat16. raise ValueError( "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." ) vae.to(accelerator.device, dtype=torch.float32) transformer.to(accelerator.device, dtype=weight_dtype) if args.gradient_checkpointing: transformer.enable_gradient_checkpointing() # now we will add new LoRA weights to the attention layers transformer_lora_config = LoraConfig( r=args.rank, lora_alpha=args.rank, init_lora_weights="gaussian", target_modules=["to_k", "to_q", "to_v", "to_out.0"], ) transformer.add_adapter(transformer_lora_config) def unwrap_model(model): model = accelerator.unwrap_model(model) model = model._orig_mod if is_compiled_module(model) else model return model # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: transformer_lora_layers_to_save = None for model in models: if isinstance(model, type(unwrap_model(transformer))): transformer_lora_layers_to_save = get_peft_model_state_dict(model) else: raise ValueError(f"unexpected save model: {model.__class__}") # make sure to pop weight so that corresponding model is not saved again weights.pop() StableDiffusion3Pipeline.save_lora_weights( output_dir, transformer_lora_layers=transformer_lora_layers_to_save, ) def load_model_hook(models, input_dir): transformer_ = None while len(models) > 0: model = models.pop() if isinstance(model, type(unwrap_model(transformer))): transformer_ = model else: raise ValueError(f"unexpected save model: {model.__class__}") lora_state_dict = StableDiffusion3Pipeline.lora_state_dict(input_dir) transformer_state_dict = { f'{k.replace("transformer.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.") } transformer_state_dict = convert_unet_state_dict_to_peft(transformer_state_dict) incompatible_keys = set_peft_model_state_dict(transformer_, transformer_state_dict, adapter_name="default") if incompatible_keys is not None: # check only for unexpected keys unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) if unexpected_keys: logger.warning( f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " f" {unexpected_keys}. " ) # Make sure the trainable params are in float32. This is again needed since the base models # are in `weight_dtype`. More details: # https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804 if args.mixed_precision == "fp16": models = [transformer_] # only upcast trainable parameters (LoRA) into fp32 cast_training_params(models) accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32 and torch.cuda.is_available(): torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Make sure the trainable params are in float32. if args.mixed_precision == "fp16": models = [transformer] # only upcast trainable parameters (LoRA) into fp32 cast_training_params(models, dtype=torch.float32) # Optimization parameters transformer_lora_parameters = list(filter(lambda p: p.requires_grad, transformer.parameters())) transformer_parameters_with_lr = {"params": transformer_lora_parameters, "lr": args.learning_rate} params_to_optimize = [transformer_parameters_with_lr] # Optimizer creation if not args.optimizer.lower() == "adamw": logger.warning( f"Unsupported choice of optimizer: {args.optimizer}. Supported optimizers include [adamW]." "Defaulting to adamW" ) args.optimizer = "adamw" if args.use_8bit_adam and not args.optimizer.lower() == "adamw": logger.warning( f"use_8bit_adam is ignored when optimizer is not set to 'AdamW'. Optimizer was " f"set to {args.optimizer.lower()}" ) if args.optimizer.lower() == "adamw": if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW optimizer = optimizer_class( params_to_optimize, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Dataset and DataLoaders creation: train_dataset = DreamBoothDataset( data_df_path=args.data_df_path, instance_data_root=args.instance_data_dir, instance_prompt=args.instance_prompt, size=args.resolution, center_crop=args.center_crop, ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=lambda examples: collate_fn(examples), num_workers=args.dataloader_num_workers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, num_cycles=args.lr_num_cycles, power=args.lr_power, ) # Prepare everything with our `accelerator`. transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( transformer, optimizer, train_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: tracker_name = "dreambooth-sd3-lora-miniature" accelerator.init_trackers(tracker_name, config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num batches each epoch = {len(train_dataloader)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the mos recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None initial_global_step = 0 else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) initial_global_step = global_step first_epoch = global_step // num_update_steps_per_epoch else: initial_global_step = 0 progress_bar = tqdm( range(0, args.max_train_steps), initial=initial_global_step, desc="Steps", # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) def get_sigmas(timesteps, n_dim=4, dtype=torch.float32): sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype) schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device) timesteps = timesteps.to(accelerator.device) step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] sigma = sigmas[step_indices].flatten() while len(sigma.shape) < n_dim: sigma = sigma.unsqueeze(-1) return sigma for epoch in range(first_epoch, args.num_train_epochs): transformer.train() for step, batch in enumerate(train_dataloader): models_to_accumulate = [transformer] with accelerator.accumulate(models_to_accumulate): pixel_values = batch["pixel_values"].to(dtype=vae.dtype) # Convert images to latent space model_input = vae.encode(pixel_values).latent_dist.sample() model_input = model_input * vae.config.scaling_factor model_input = model_input.to(dtype=weight_dtype) # Sample noise that we'll add to the latents noise = torch.randn_like(model_input) bsz = model_input.shape[0] # Sample a random timestep for each image # for weighting schemes where we sample timesteps non-uniformly u = compute_density_for_timestep_sampling( weighting_scheme=args.weighting_scheme, batch_size=bsz, logit_mean=args.logit_mean, logit_std=args.logit_std, mode_scale=args.mode_scale, ) indices = (u * noise_scheduler_copy.config.num_train_timesteps).long() timesteps = noise_scheduler_copy.timesteps[indices].to(device=model_input.device) # Add noise according to flow matching. sigmas = get_sigmas(timesteps, n_dim=model_input.ndim, dtype=model_input.dtype) noisy_model_input = sigmas * noise + (1.0 - sigmas) * model_input # Predict the noise residual prompt_embeds, pooled_prompt_embeds = batch["prompt_embeds"], batch["pooled_prompt_embeds"] prompt_embeds = prompt_embeds.to(device=accelerator.device, dtype=weight_dtype) pooled_prompt_embeds = pooled_prompt_embeds.to(device=accelerator.device, dtype=weight_dtype) model_pred = transformer( hidden_states=noisy_model_input, timestep=timesteps, encoder_hidden_states=prompt_embeds, pooled_projections=pooled_prompt_embeds, return_dict=False, )[0] # Follow: Section 5 of https://arxiv.org/abs/2206.00364. # Preconditioning of the model outputs. model_pred = model_pred * (-sigmas) + noisy_model_input # these weighting schemes use a uniform timestep sampling # and instead post-weight the loss weighting = compute_loss_weighting_for_sd3(weighting_scheme=args.weighting_scheme, sigmas=sigmas) # flow matching loss target = model_input # Compute regular loss. loss = torch.mean( (weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1), 1, ) loss = loss.mean() accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = transformer_lora_parameters accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if accelerator.is_main_process: if global_step % args.checkpointing_steps == 0: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break if accelerator.is_main_process: if args.validation_prompt is not None and epoch % args.validation_epochs == 0: pipeline = StableDiffusion3Pipeline.from_pretrained( args.pretrained_model_name_or_path, vae=vae, transformer=accelerator.unwrap_model(transformer), revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) pipeline_args = {"prompt": args.validation_prompt} images = log_validation( pipeline=pipeline, args=args, accelerator=accelerator, pipeline_args=pipeline_args, epoch=epoch, ) torch.cuda.empty_cache() gc.collect() # Save the lora layers accelerator.wait_for_everyone() if accelerator.is_main_process: transformer = unwrap_model(transformer) transformer = transformer.to(torch.float32) transformer_lora_layers = get_peft_model_state_dict(transformer) StableDiffusion3Pipeline.save_lora_weights( save_directory=args.output_dir, transformer_lora_layers=transformer_lora_layers, ) # Final inference # Load previous pipeline pipeline = StableDiffusion3Pipeline.from_pretrained( args.pretrained_model_name_or_path, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) # load attention processors pipeline.load_lora_weights(args.output_dir) # run inference images = [] if args.validation_prompt and args.num_validation_images > 0: pipeline_args = {"prompt": args.validation_prompt} images = log_validation( pipeline=pipeline, args=args, accelerator=accelerator, pipeline_args=pipeline_args, epoch=epoch, is_final_validation=True, ) if args.push_to_hub: save_model_card( repo_id, images=images, base_model=args.pretrained_model_name_or_path, instance_prompt=args.instance_prompt, validation_prompt=args.validation_prompt, repo_folder=args.output_dir, ) upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)