Upload train_dreambooth_lora_sd3_miniature.py
Browse files
train_dreambooth_lora_sd3_miniature.py
ADDED
@@ -0,0 +1,1147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import copy
|
19 |
+
import gc
|
20 |
+
import hashlib
|
21 |
+
import logging
|
22 |
+
import math
|
23 |
+
import os
|
24 |
+
import random
|
25 |
+
import shutil
|
26 |
+
from contextlib import nullcontext
|
27 |
+
from pathlib import Path
|
28 |
+
|
29 |
+
import numpy as np
|
30 |
+
import pandas as pd
|
31 |
+
import torch
|
32 |
+
import torch.utils.checkpoint
|
33 |
+
import transformers
|
34 |
+
from accelerate import Accelerator
|
35 |
+
from accelerate.logging import get_logger
|
36 |
+
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
|
37 |
+
from huggingface_hub import create_repo, upload_folder
|
38 |
+
from peft import LoraConfig, set_peft_model_state_dict
|
39 |
+
from peft.utils import get_peft_model_state_dict
|
40 |
+
from PIL import Image
|
41 |
+
from PIL.ImageOps import exif_transpose
|
42 |
+
from torch.utils.data import Dataset
|
43 |
+
from torchvision import transforms
|
44 |
+
from torchvision.transforms.functional import crop
|
45 |
+
from tqdm.auto import tqdm
|
46 |
+
|
47 |
+
import diffusers
|
48 |
+
from diffusers import (
|
49 |
+
AutoencoderKL,
|
50 |
+
FlowMatchEulerDiscreteScheduler,
|
51 |
+
SD3Transformer2DModel,
|
52 |
+
StableDiffusion3Pipeline,
|
53 |
+
)
|
54 |
+
from diffusers.optimization import get_scheduler
|
55 |
+
from diffusers.training_utils import (
|
56 |
+
cast_training_params,
|
57 |
+
compute_density_for_timestep_sampling,
|
58 |
+
compute_loss_weighting_for_sd3,
|
59 |
+
)
|
60 |
+
from diffusers.utils import (
|
61 |
+
check_min_version,
|
62 |
+
convert_unet_state_dict_to_peft,
|
63 |
+
is_wandb_available,
|
64 |
+
)
|
65 |
+
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
|
66 |
+
from diffusers.utils.torch_utils import is_compiled_module
|
67 |
+
|
68 |
+
|
69 |
+
if is_wandb_available():
|
70 |
+
import wandb
|
71 |
+
|
72 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
73 |
+
check_min_version("0.30.0.dev0")
|
74 |
+
|
75 |
+
logger = get_logger(__name__)
|
76 |
+
|
77 |
+
|
78 |
+
def save_model_card(
|
79 |
+
repo_id: str,
|
80 |
+
images=None,
|
81 |
+
base_model: str = None,
|
82 |
+
train_text_encoder=False,
|
83 |
+
instance_prompt=None,
|
84 |
+
validation_prompt=None,
|
85 |
+
repo_folder=None,
|
86 |
+
):
|
87 |
+
widget_dict = []
|
88 |
+
if images is not None:
|
89 |
+
for i, image in enumerate(images):
|
90 |
+
image.save(os.path.join(repo_folder, f"image_{i}.png"))
|
91 |
+
widget_dict.append(
|
92 |
+
{"text": validation_prompt if validation_prompt else " ", "output": {"url": f"image_{i}.png"}}
|
93 |
+
)
|
94 |
+
|
95 |
+
model_description = f"""
|
96 |
+
# SD3 DreamBooth LoRA - {repo_id}
|
97 |
+
|
98 |
+
<Gallery />
|
99 |
+
|
100 |
+
## Model description
|
101 |
+
|
102 |
+
These are {repo_id} DreamBooth weights for {base_model}.
|
103 |
+
|
104 |
+
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
|
105 |
+
|
106 |
+
LoRA for the text encoder was enabled: {train_text_encoder}.
|
107 |
+
|
108 |
+
## Trigger words
|
109 |
+
|
110 |
+
You should use {instance_prompt} to trigger the image generation.
|
111 |
+
|
112 |
+
## Download model
|
113 |
+
|
114 |
+
[Download]({repo_id}/tree/main) them in the Files & versions tab.
|
115 |
+
|
116 |
+
## License
|
117 |
+
|
118 |
+
Please adhere to the licensing terms as described [here](https://huggingface.co/stabilityai/stable-diffusion-3-medium/blob/main/LICENSE).
|
119 |
+
"""
|
120 |
+
model_card = load_or_create_model_card(
|
121 |
+
repo_id_or_path=repo_id,
|
122 |
+
from_training=True,
|
123 |
+
license="openrail++",
|
124 |
+
base_model=base_model,
|
125 |
+
prompt=instance_prompt,
|
126 |
+
model_description=model_description,
|
127 |
+
widget=widget_dict,
|
128 |
+
)
|
129 |
+
tags = [
|
130 |
+
"text-to-image",
|
131 |
+
"diffusers-training",
|
132 |
+
"diffusers",
|
133 |
+
"lora",
|
134 |
+
"sd3",
|
135 |
+
"sd3-diffusers",
|
136 |
+
"template:sd-lora",
|
137 |
+
]
|
138 |
+
|
139 |
+
model_card = populate_model_card(model_card, tags=tags)
|
140 |
+
model_card.save(os.path.join(repo_folder, "README.md"))
|
141 |
+
|
142 |
+
|
143 |
+
def log_validation(
|
144 |
+
pipeline,
|
145 |
+
args,
|
146 |
+
accelerator,
|
147 |
+
pipeline_args,
|
148 |
+
epoch,
|
149 |
+
is_final_validation=False,
|
150 |
+
):
|
151 |
+
logger.info(
|
152 |
+
f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
|
153 |
+
f" {args.validation_prompt}."
|
154 |
+
)
|
155 |
+
pipeline.enable_model_cpu_offload()
|
156 |
+
pipeline.set_progress_bar_config(disable=True)
|
157 |
+
|
158 |
+
# run inference
|
159 |
+
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
|
160 |
+
# autocast_ctx = torch.autocast(accelerator.device.type) if not is_final_validation else nullcontext()
|
161 |
+
autocast_ctx = nullcontext()
|
162 |
+
|
163 |
+
with autocast_ctx:
|
164 |
+
images = [pipeline(**pipeline_args, generator=generator).images[0] for _ in range(args.num_validation_images)]
|
165 |
+
|
166 |
+
for tracker in accelerator.trackers:
|
167 |
+
phase_name = "test" if is_final_validation else "validation"
|
168 |
+
if tracker.name == "tensorboard":
|
169 |
+
np_images = np.stack([np.asarray(img) for img in images])
|
170 |
+
tracker.writer.add_images(phase_name, np_images, epoch, dataformats="NHWC")
|
171 |
+
if tracker.name == "wandb":
|
172 |
+
tracker.log(
|
173 |
+
{
|
174 |
+
phase_name: [
|
175 |
+
wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images)
|
176 |
+
]
|
177 |
+
}
|
178 |
+
)
|
179 |
+
|
180 |
+
del pipeline
|
181 |
+
if torch.cuda.is_available():
|
182 |
+
torch.cuda.empty_cache()
|
183 |
+
|
184 |
+
return images
|
185 |
+
|
186 |
+
|
187 |
+
def parse_args(input_args=None):
|
188 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
189 |
+
parser.add_argument(
|
190 |
+
"--pretrained_model_name_or_path",
|
191 |
+
type=str,
|
192 |
+
default=None,
|
193 |
+
required=True,
|
194 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
195 |
+
)
|
196 |
+
parser.add_argument(
|
197 |
+
"--revision",
|
198 |
+
type=str,
|
199 |
+
default=None,
|
200 |
+
required=False,
|
201 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
202 |
+
)
|
203 |
+
parser.add_argument(
|
204 |
+
"--variant",
|
205 |
+
type=str,
|
206 |
+
default=None,
|
207 |
+
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
|
208 |
+
)
|
209 |
+
parser.add_argument(
|
210 |
+
"--instance_data_dir",
|
211 |
+
type=str,
|
212 |
+
default=None,
|
213 |
+
help=("A folder containing the training data. "),
|
214 |
+
)
|
215 |
+
parser.add_argument(
|
216 |
+
"--data_df_path",
|
217 |
+
type=str,
|
218 |
+
default=None,
|
219 |
+
help=("Path to the parquet file serialized with compute_embeddings.py."),
|
220 |
+
)
|
221 |
+
parser.add_argument(
|
222 |
+
"--cache_dir",
|
223 |
+
type=str,
|
224 |
+
default=None,
|
225 |
+
help="The directory where the downloaded models and datasets will be stored.",
|
226 |
+
)
|
227 |
+
parser.add_argument(
|
228 |
+
"--instance_prompt",
|
229 |
+
type=str,
|
230 |
+
default=None,
|
231 |
+
required=True,
|
232 |
+
help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'",
|
233 |
+
)
|
234 |
+
parser.add_argument(
|
235 |
+
"--max_sequence_length",
|
236 |
+
type=int,
|
237 |
+
default=77,
|
238 |
+
help="Maximum sequence length to use with with the T5 text encoder",
|
239 |
+
)
|
240 |
+
parser.add_argument(
|
241 |
+
"--validation_prompt",
|
242 |
+
type=str,
|
243 |
+
default=None,
|
244 |
+
help="A prompt that is used during validation to verify that the model is learning.",
|
245 |
+
)
|
246 |
+
parser.add_argument(
|
247 |
+
"--num_validation_images",
|
248 |
+
type=int,
|
249 |
+
default=4,
|
250 |
+
help="Number of images that should be generated during validation with `validation_prompt`.",
|
251 |
+
)
|
252 |
+
parser.add_argument(
|
253 |
+
"--validation_epochs",
|
254 |
+
type=int,
|
255 |
+
default=50,
|
256 |
+
help=(
|
257 |
+
"Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt"
|
258 |
+
" `args.validation_prompt` multiple times: `args.num_validation_images`."
|
259 |
+
),
|
260 |
+
)
|
261 |
+
parser.add_argument(
|
262 |
+
"--rank",
|
263 |
+
type=int,
|
264 |
+
default=4,
|
265 |
+
help=("The dimension of the LoRA update matrices."),
|
266 |
+
)
|
267 |
+
parser.add_argument(
|
268 |
+
"--output_dir",
|
269 |
+
type=str,
|
270 |
+
default="sd3-dreambooth-lora",
|
271 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
272 |
+
)
|
273 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
274 |
+
parser.add_argument(
|
275 |
+
"--resolution",
|
276 |
+
type=int,
|
277 |
+
default=512,
|
278 |
+
help=(
|
279 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
280 |
+
" resolution"
|
281 |
+
),
|
282 |
+
)
|
283 |
+
parser.add_argument(
|
284 |
+
"--center_crop",
|
285 |
+
default=False,
|
286 |
+
action="store_true",
|
287 |
+
help=(
|
288 |
+
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
|
289 |
+
" cropped. The images will be resized to the resolution first before cropping."
|
290 |
+
),
|
291 |
+
)
|
292 |
+
parser.add_argument(
|
293 |
+
"--random_flip",
|
294 |
+
action="store_true",
|
295 |
+
help="whether to randomly flip images horizontally",
|
296 |
+
)
|
297 |
+
|
298 |
+
parser.add_argument(
|
299 |
+
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
300 |
+
)
|
301 |
+
parser.add_argument("--num_train_epochs", type=int, default=1)
|
302 |
+
parser.add_argument(
|
303 |
+
"--max_train_steps",
|
304 |
+
type=int,
|
305 |
+
default=None,
|
306 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
307 |
+
)
|
308 |
+
parser.add_argument(
|
309 |
+
"--checkpointing_steps",
|
310 |
+
type=int,
|
311 |
+
default=500,
|
312 |
+
help=(
|
313 |
+
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
|
314 |
+
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
|
315 |
+
" training using `--resume_from_checkpoint`."
|
316 |
+
),
|
317 |
+
)
|
318 |
+
parser.add_argument(
|
319 |
+
"--checkpoints_total_limit",
|
320 |
+
type=int,
|
321 |
+
default=None,
|
322 |
+
help=("Max number of checkpoints to store."),
|
323 |
+
)
|
324 |
+
parser.add_argument(
|
325 |
+
"--resume_from_checkpoint",
|
326 |
+
type=str,
|
327 |
+
default=None,
|
328 |
+
help=(
|
329 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
330 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
331 |
+
),
|
332 |
+
)
|
333 |
+
parser.add_argument(
|
334 |
+
"--gradient_accumulation_steps",
|
335 |
+
type=int,
|
336 |
+
default=1,
|
337 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
338 |
+
)
|
339 |
+
parser.add_argument(
|
340 |
+
"--gradient_checkpointing",
|
341 |
+
action="store_true",
|
342 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
343 |
+
)
|
344 |
+
parser.add_argument(
|
345 |
+
"--learning_rate",
|
346 |
+
type=float,
|
347 |
+
default=1e-4,
|
348 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
349 |
+
)
|
350 |
+
parser.add_argument(
|
351 |
+
"--scale_lr",
|
352 |
+
action="store_true",
|
353 |
+
default=False,
|
354 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
355 |
+
)
|
356 |
+
parser.add_argument(
|
357 |
+
"--lr_scheduler",
|
358 |
+
type=str,
|
359 |
+
default="constant",
|
360 |
+
help=(
|
361 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
362 |
+
' "constant", "constant_with_warmup"]'
|
363 |
+
),
|
364 |
+
)
|
365 |
+
parser.add_argument(
|
366 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
367 |
+
)
|
368 |
+
parser.add_argument(
|
369 |
+
"--lr_num_cycles",
|
370 |
+
type=int,
|
371 |
+
default=1,
|
372 |
+
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
|
373 |
+
)
|
374 |
+
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
|
375 |
+
parser.add_argument(
|
376 |
+
"--dataloader_num_workers",
|
377 |
+
type=int,
|
378 |
+
default=0,
|
379 |
+
help=(
|
380 |
+
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
381 |
+
),
|
382 |
+
)
|
383 |
+
parser.add_argument(
|
384 |
+
"--weighting_scheme",
|
385 |
+
type=str,
|
386 |
+
default="logit_normal",
|
387 |
+
choices=["sigma_sqrt", "logit_normal", "mode", "cosmap"],
|
388 |
+
)
|
389 |
+
parser.add_argument(
|
390 |
+
"--logit_mean", type=float, default=0.0, help="mean to use when using the `'logit_normal'` weighting scheme."
|
391 |
+
)
|
392 |
+
parser.add_argument(
|
393 |
+
"--logit_std", type=float, default=1.0, help="std to use when using the `'logit_normal'` weighting scheme."
|
394 |
+
)
|
395 |
+
parser.add_argument(
|
396 |
+
"--mode_scale",
|
397 |
+
type=float,
|
398 |
+
default=1.29,
|
399 |
+
help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.",
|
400 |
+
)
|
401 |
+
parser.add_argument(
|
402 |
+
"--optimizer",
|
403 |
+
type=str,
|
404 |
+
default="AdamW",
|
405 |
+
help=('The optimizer type to use. Choose between ["AdamW"]'),
|
406 |
+
)
|
407 |
+
|
408 |
+
parser.add_argument(
|
409 |
+
"--use_8bit_adam",
|
410 |
+
action="store_true",
|
411 |
+
help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW",
|
412 |
+
)
|
413 |
+
|
414 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
415 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
416 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params")
|
417 |
+
|
418 |
+
parser.add_argument(
|
419 |
+
"--adam_epsilon",
|
420 |
+
type=float,
|
421 |
+
default=1e-08,
|
422 |
+
help="Epsilon value for the Adam optimizer.",
|
423 |
+
)
|
424 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
425 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
426 |
+
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
427 |
+
parser.add_argument(
|
428 |
+
"--hub_model_id",
|
429 |
+
type=str,
|
430 |
+
default=None,
|
431 |
+
help="The name of the repository to keep in sync with the local `output_dir`.",
|
432 |
+
)
|
433 |
+
parser.add_argument(
|
434 |
+
"--logging_dir",
|
435 |
+
type=str,
|
436 |
+
default="logs",
|
437 |
+
help=(
|
438 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
439 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
440 |
+
),
|
441 |
+
)
|
442 |
+
parser.add_argument(
|
443 |
+
"--allow_tf32",
|
444 |
+
action="store_true",
|
445 |
+
help=(
|
446 |
+
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
447 |
+
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
448 |
+
),
|
449 |
+
)
|
450 |
+
parser.add_argument(
|
451 |
+
"--report_to",
|
452 |
+
type=str,
|
453 |
+
default="tensorboard",
|
454 |
+
help=(
|
455 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
456 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
457 |
+
),
|
458 |
+
)
|
459 |
+
parser.add_argument(
|
460 |
+
"--mixed_precision",
|
461 |
+
type=str,
|
462 |
+
default=None,
|
463 |
+
choices=["no", "fp16", "bf16"],
|
464 |
+
help=(
|
465 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
466 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
467 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
468 |
+
),
|
469 |
+
)
|
470 |
+
parser.add_argument(
|
471 |
+
"--prior_generation_precision",
|
472 |
+
type=str,
|
473 |
+
default=None,
|
474 |
+
choices=["no", "fp32", "fp16", "bf16"],
|
475 |
+
help=(
|
476 |
+
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
477 |
+
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32."
|
478 |
+
),
|
479 |
+
)
|
480 |
+
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
481 |
+
|
482 |
+
if input_args is not None:
|
483 |
+
args = parser.parse_args(input_args)
|
484 |
+
else:
|
485 |
+
args = parser.parse_args()
|
486 |
+
|
487 |
+
if args.instance_data_dir is None:
|
488 |
+
raise ValueError("Specify `instance_data_dir`.")
|
489 |
+
|
490 |
+
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
491 |
+
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
492 |
+
args.local_rank = env_local_rank
|
493 |
+
|
494 |
+
return args
|
495 |
+
|
496 |
+
|
497 |
+
class DreamBoothDataset(Dataset):
|
498 |
+
"""
|
499 |
+
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
|
500 |
+
It pre-processes the images.
|
501 |
+
"""
|
502 |
+
|
503 |
+
def __init__(
|
504 |
+
self,
|
505 |
+
data_df_path,
|
506 |
+
instance_data_root,
|
507 |
+
instance_prompt,
|
508 |
+
size=1024,
|
509 |
+
center_crop=False,
|
510 |
+
):
|
511 |
+
# Logistics
|
512 |
+
self.size = size
|
513 |
+
self.center_crop = center_crop
|
514 |
+
|
515 |
+
self.instance_prompt = instance_prompt
|
516 |
+
self.instance_data_root = Path(instance_data_root)
|
517 |
+
if not self.instance_data_root.exists():
|
518 |
+
raise ValueError("Instance images root doesn't exists.")
|
519 |
+
|
520 |
+
# Load images.
|
521 |
+
instance_images = [Image.open(path) for path in list(Path(instance_data_root).iterdir())]
|
522 |
+
image_hashes = [self.generate_image_hash(path) for path in list(Path(instance_data_root).iterdir())]
|
523 |
+
self.instance_images = instance_images
|
524 |
+
self.image_hashes = image_hashes
|
525 |
+
|
526 |
+
# Image transformations
|
527 |
+
self.pixel_values = self.apply_image_transformations(
|
528 |
+
instance_images=instance_images, size=size, center_crop=center_crop
|
529 |
+
)
|
530 |
+
|
531 |
+
# Map hashes to embeddings.
|
532 |
+
self.data_dict = self.map_image_hash_embedding(data_df_path=data_df_path)
|
533 |
+
|
534 |
+
self.num_instance_images = len(instance_images)
|
535 |
+
self._length = self.num_instance_images
|
536 |
+
|
537 |
+
def __len__(self):
|
538 |
+
return self._length
|
539 |
+
|
540 |
+
def __getitem__(self, index):
|
541 |
+
example = {}
|
542 |
+
instance_image = self.pixel_values[index % self.num_instance_images]
|
543 |
+
image_hash = self.image_hashes[index % self.num_instance_images]
|
544 |
+
prompt_embeds, pooled_prompt_embeds = self.data_dict[image_hash]
|
545 |
+
example["instance_images"] = instance_image
|
546 |
+
example["prompt_embeds"] = prompt_embeds
|
547 |
+
example["pooled_prompt_embeds"] = pooled_prompt_embeds
|
548 |
+
return example
|
549 |
+
|
550 |
+
def apply_image_transformations(self, instance_images, size, center_crop):
|
551 |
+
pixel_values = []
|
552 |
+
|
553 |
+
train_resize = transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR)
|
554 |
+
train_crop = transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size)
|
555 |
+
train_flip = transforms.RandomHorizontalFlip(p=1.0)
|
556 |
+
train_transforms = transforms.Compose(
|
557 |
+
[
|
558 |
+
transforms.ToTensor(),
|
559 |
+
transforms.Normalize([0.5], [0.5]),
|
560 |
+
]
|
561 |
+
)
|
562 |
+
for image in instance_images:
|
563 |
+
image = exif_transpose(image)
|
564 |
+
if not image.mode == "RGB":
|
565 |
+
image = image.convert("RGB")
|
566 |
+
image = train_resize(image)
|
567 |
+
if args.random_flip and random.random() < 0.5:
|
568 |
+
# flip
|
569 |
+
image = train_flip(image)
|
570 |
+
if args.center_crop:
|
571 |
+
y1 = max(0, int(round((image.height - args.resolution) / 2.0)))
|
572 |
+
x1 = max(0, int(round((image.width - args.resolution) / 2.0)))
|
573 |
+
image = train_crop(image)
|
574 |
+
else:
|
575 |
+
y1, x1, h, w = train_crop.get_params(image, (args.resolution, args.resolution))
|
576 |
+
image = crop(image, y1, x1, h, w)
|
577 |
+
image = train_transforms(image)
|
578 |
+
pixel_values.append(image)
|
579 |
+
|
580 |
+
return pixel_values
|
581 |
+
|
582 |
+
def convert_to_torch_tensor(self, embeddings: list):
|
583 |
+
prompt_embeds = embeddings[0]
|
584 |
+
pooled_prompt_embeds = embeddings[1]
|
585 |
+
prompt_embeds = np.array(prompt_embeds).reshape(154, 4096)
|
586 |
+
pooled_prompt_embeds = np.array(pooled_prompt_embeds).reshape(2048)
|
587 |
+
return torch.from_numpy(prompt_embeds), torch.from_numpy(pooled_prompt_embeds)
|
588 |
+
|
589 |
+
def map_image_hash_embedding(self, data_df_path):
|
590 |
+
hashes_df = pd.read_parquet(data_df_path)
|
591 |
+
data_dict = {}
|
592 |
+
for i, row in hashes_df.iterrows():
|
593 |
+
embeddings = [row["prompt_embeds"], row["pooled_prompt_embeds"]]
|
594 |
+
prompt_embeds, pooled_prompt_embeds = self.convert_to_torch_tensor(embeddings=embeddings)
|
595 |
+
data_dict.update({row["image_hash"]: (prompt_embeds, pooled_prompt_embeds)})
|
596 |
+
return data_dict
|
597 |
+
|
598 |
+
def generate_image_hash(self, image_path):
|
599 |
+
with open(image_path, "rb") as f:
|
600 |
+
img_data = f.read()
|
601 |
+
return hashlib.sha256(img_data).hexdigest()
|
602 |
+
|
603 |
+
|
604 |
+
def collate_fn(examples):
|
605 |
+
pixel_values = [example["instance_images"] for example in examples]
|
606 |
+
prompt_embeds = [example["prompt_embeds"] for example in examples]
|
607 |
+
pooled_prompt_embeds = [example["pooled_prompt_embeds"] for example in examples]
|
608 |
+
|
609 |
+
pixel_values = torch.stack(pixel_values)
|
610 |
+
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
611 |
+
prompt_embeds = torch.stack(prompt_embeds)
|
612 |
+
pooled_prompt_embeds = torch.stack(pooled_prompt_embeds)
|
613 |
+
|
614 |
+
batch = {
|
615 |
+
"pixel_values": pixel_values,
|
616 |
+
"prompt_embeds": prompt_embeds,
|
617 |
+
"pooled_prompt_embeds": pooled_prompt_embeds,
|
618 |
+
}
|
619 |
+
return batch
|
620 |
+
|
621 |
+
|
622 |
+
def main(args):
|
623 |
+
if args.report_to == "wandb" and args.hub_token is not None:
|
624 |
+
raise ValueError(
|
625 |
+
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
|
626 |
+
" Please use `huggingface-cli login` to authenticate with the Hub."
|
627 |
+
)
|
628 |
+
|
629 |
+
if torch.backends.mps.is_available() and args.mixed_precision == "bf16":
|
630 |
+
# due to pytorch#99272, MPS does not yet support bfloat16.
|
631 |
+
raise ValueError(
|
632 |
+
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
|
633 |
+
)
|
634 |
+
|
635 |
+
logging_dir = Path(args.output_dir, args.logging_dir)
|
636 |
+
|
637 |
+
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
638 |
+
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
639 |
+
accelerator = Accelerator(
|
640 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
641 |
+
mixed_precision=args.mixed_precision,
|
642 |
+
log_with=args.report_to,
|
643 |
+
project_config=accelerator_project_config,
|
644 |
+
kwargs_handlers=[kwargs],
|
645 |
+
)
|
646 |
+
|
647 |
+
# Disable AMP for MPS.
|
648 |
+
if torch.backends.mps.is_available():
|
649 |
+
accelerator.native_amp = False
|
650 |
+
|
651 |
+
if args.report_to == "wandb":
|
652 |
+
if not is_wandb_available():
|
653 |
+
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
|
654 |
+
|
655 |
+
# Make one log on every process with the configuration for debugging.
|
656 |
+
logging.basicConfig(
|
657 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
658 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
659 |
+
level=logging.INFO,
|
660 |
+
)
|
661 |
+
logger.info(accelerator.state, main_process_only=False)
|
662 |
+
if accelerator.is_local_main_process:
|
663 |
+
transformers.utils.logging.set_verbosity_warning()
|
664 |
+
diffusers.utils.logging.set_verbosity_info()
|
665 |
+
else:
|
666 |
+
transformers.utils.logging.set_verbosity_error()
|
667 |
+
diffusers.utils.logging.set_verbosity_error()
|
668 |
+
|
669 |
+
# If passed along, set the training seed now.
|
670 |
+
if args.seed is not None:
|
671 |
+
set_seed(args.seed)
|
672 |
+
|
673 |
+
# Handle the repository creation
|
674 |
+
if accelerator.is_main_process:
|
675 |
+
if args.output_dir is not None:
|
676 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
677 |
+
|
678 |
+
if args.push_to_hub:
|
679 |
+
repo_id = create_repo(
|
680 |
+
repo_id=args.hub_model_id or Path(args.output_dir).name,
|
681 |
+
exist_ok=True,
|
682 |
+
).repo_id
|
683 |
+
|
684 |
+
# Load scheduler and models
|
685 |
+
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|
686 |
+
args.pretrained_model_name_or_path, subfolder="scheduler"
|
687 |
+
)
|
688 |
+
noise_scheduler_copy = copy.deepcopy(noise_scheduler)
|
689 |
+
vae = AutoencoderKL.from_pretrained(
|
690 |
+
args.pretrained_model_name_or_path,
|
691 |
+
subfolder="vae",
|
692 |
+
revision=args.revision,
|
693 |
+
variant=args.variant,
|
694 |
+
)
|
695 |
+
transformer = SD3Transformer2DModel.from_pretrained(
|
696 |
+
args.pretrained_model_name_or_path, subfolder="transformer", revision=args.revision, variant=args.variant
|
697 |
+
)
|
698 |
+
|
699 |
+
transformer.requires_grad_(False)
|
700 |
+
vae.requires_grad_(False)
|
701 |
+
|
702 |
+
# For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora transformer) to half-precision
|
703 |
+
# as these weights are only used for inference, keeping weights in full precision is not required.
|
704 |
+
weight_dtype = torch.float32
|
705 |
+
if accelerator.mixed_precision == "fp16":
|
706 |
+
weight_dtype = torch.float16
|
707 |
+
elif accelerator.mixed_precision == "bf16":
|
708 |
+
weight_dtype = torch.bfloat16
|
709 |
+
|
710 |
+
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
|
711 |
+
# due to pytorch#99272, MPS does not yet support bfloat16.
|
712 |
+
raise ValueError(
|
713 |
+
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
|
714 |
+
)
|
715 |
+
|
716 |
+
vae.to(accelerator.device, dtype=torch.float32)
|
717 |
+
transformer.to(accelerator.device, dtype=weight_dtype)
|
718 |
+
|
719 |
+
if args.gradient_checkpointing:
|
720 |
+
transformer.enable_gradient_checkpointing()
|
721 |
+
|
722 |
+
# now we will add new LoRA weights to the attention layers
|
723 |
+
transformer_lora_config = LoraConfig(
|
724 |
+
r=args.rank,
|
725 |
+
lora_alpha=args.rank,
|
726 |
+
init_lora_weights="gaussian",
|
727 |
+
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
728 |
+
)
|
729 |
+
transformer.add_adapter(transformer_lora_config)
|
730 |
+
|
731 |
+
def unwrap_model(model):
|
732 |
+
model = accelerator.unwrap_model(model)
|
733 |
+
model = model._orig_mod if is_compiled_module(model) else model
|
734 |
+
return model
|
735 |
+
|
736 |
+
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
737 |
+
def save_model_hook(models, weights, output_dir):
|
738 |
+
if accelerator.is_main_process:
|
739 |
+
transformer_lora_layers_to_save = None
|
740 |
+
for model in models:
|
741 |
+
if isinstance(model, type(unwrap_model(transformer))):
|
742 |
+
transformer_lora_layers_to_save = get_peft_model_state_dict(model)
|
743 |
+
else:
|
744 |
+
raise ValueError(f"unexpected save model: {model.__class__}")
|
745 |
+
|
746 |
+
# make sure to pop weight so that corresponding model is not saved again
|
747 |
+
weights.pop()
|
748 |
+
|
749 |
+
StableDiffusion3Pipeline.save_lora_weights(
|
750 |
+
output_dir,
|
751 |
+
transformer_lora_layers=transformer_lora_layers_to_save,
|
752 |
+
)
|
753 |
+
|
754 |
+
def load_model_hook(models, input_dir):
|
755 |
+
transformer_ = None
|
756 |
+
|
757 |
+
while len(models) > 0:
|
758 |
+
model = models.pop()
|
759 |
+
|
760 |
+
if isinstance(model, type(unwrap_model(transformer))):
|
761 |
+
transformer_ = model
|
762 |
+
else:
|
763 |
+
raise ValueError(f"unexpected save model: {model.__class__}")
|
764 |
+
|
765 |
+
lora_state_dict = StableDiffusion3Pipeline.lora_state_dict(input_dir)
|
766 |
+
|
767 |
+
transformer_state_dict = {
|
768 |
+
f'{k.replace("transformer.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.")
|
769 |
+
}
|
770 |
+
transformer_state_dict = convert_unet_state_dict_to_peft(transformer_state_dict)
|
771 |
+
incompatible_keys = set_peft_model_state_dict(transformer_, transformer_state_dict, adapter_name="default")
|
772 |
+
if incompatible_keys is not None:
|
773 |
+
# check only for unexpected keys
|
774 |
+
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
775 |
+
if unexpected_keys:
|
776 |
+
logger.warning(
|
777 |
+
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
|
778 |
+
f" {unexpected_keys}. "
|
779 |
+
)
|
780 |
+
|
781 |
+
# Make sure the trainable params are in float32. This is again needed since the base models
|
782 |
+
# are in `weight_dtype`. More details:
|
783 |
+
# https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804
|
784 |
+
if args.mixed_precision == "fp16":
|
785 |
+
models = [transformer_]
|
786 |
+
# only upcast trainable parameters (LoRA) into fp32
|
787 |
+
cast_training_params(models)
|
788 |
+
|
789 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
790 |
+
accelerator.register_load_state_pre_hook(load_model_hook)
|
791 |
+
|
792 |
+
# Enable TF32 for faster training on Ampere GPUs,
|
793 |
+
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
794 |
+
if args.allow_tf32 and torch.cuda.is_available():
|
795 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
796 |
+
|
797 |
+
if args.scale_lr:
|
798 |
+
args.learning_rate = (
|
799 |
+
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
800 |
+
)
|
801 |
+
|
802 |
+
# Make sure the trainable params are in float32.
|
803 |
+
if args.mixed_precision == "fp16":
|
804 |
+
models = [transformer]
|
805 |
+
# only upcast trainable parameters (LoRA) into fp32
|
806 |
+
cast_training_params(models, dtype=torch.float32)
|
807 |
+
|
808 |
+
# Optimization parameters
|
809 |
+
transformer_lora_parameters = list(filter(lambda p: p.requires_grad, transformer.parameters()))
|
810 |
+
transformer_parameters_with_lr = {"params": transformer_lora_parameters, "lr": args.learning_rate}
|
811 |
+
params_to_optimize = [transformer_parameters_with_lr]
|
812 |
+
|
813 |
+
# Optimizer creation
|
814 |
+
if not args.optimizer.lower() == "adamw":
|
815 |
+
logger.warning(
|
816 |
+
f"Unsupported choice of optimizer: {args.optimizer}. Supported optimizers include [adamW]."
|
817 |
+
"Defaulting to adamW"
|
818 |
+
)
|
819 |
+
args.optimizer = "adamw"
|
820 |
+
|
821 |
+
if args.use_8bit_adam and not args.optimizer.lower() == "adamw":
|
822 |
+
logger.warning(
|
823 |
+
f"use_8bit_adam is ignored when optimizer is not set to 'AdamW'. Optimizer was "
|
824 |
+
f"set to {args.optimizer.lower()}"
|
825 |
+
)
|
826 |
+
|
827 |
+
if args.optimizer.lower() == "adamw":
|
828 |
+
if args.use_8bit_adam:
|
829 |
+
try:
|
830 |
+
import bitsandbytes as bnb
|
831 |
+
except ImportError:
|
832 |
+
raise ImportError(
|
833 |
+
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
834 |
+
)
|
835 |
+
|
836 |
+
optimizer_class = bnb.optim.AdamW8bit
|
837 |
+
else:
|
838 |
+
optimizer_class = torch.optim.AdamW
|
839 |
+
|
840 |
+
optimizer = optimizer_class(
|
841 |
+
params_to_optimize,
|
842 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
843 |
+
weight_decay=args.adam_weight_decay,
|
844 |
+
eps=args.adam_epsilon,
|
845 |
+
)
|
846 |
+
|
847 |
+
# Dataset and DataLoaders creation:
|
848 |
+
train_dataset = DreamBoothDataset(
|
849 |
+
data_df_path=args.data_df_path,
|
850 |
+
instance_data_root=args.instance_data_dir,
|
851 |
+
instance_prompt=args.instance_prompt,
|
852 |
+
size=args.resolution,
|
853 |
+
center_crop=args.center_crop,
|
854 |
+
)
|
855 |
+
|
856 |
+
train_dataloader = torch.utils.data.DataLoader(
|
857 |
+
train_dataset,
|
858 |
+
batch_size=args.train_batch_size,
|
859 |
+
shuffle=True,
|
860 |
+
collate_fn=lambda examples: collate_fn(examples),
|
861 |
+
num_workers=args.dataloader_num_workers,
|
862 |
+
)
|
863 |
+
|
864 |
+
# Scheduler and math around the number of training steps.
|
865 |
+
overrode_max_train_steps = False
|
866 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
867 |
+
if args.max_train_steps is None:
|
868 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
869 |
+
overrode_max_train_steps = True
|
870 |
+
|
871 |
+
lr_scheduler = get_scheduler(
|
872 |
+
args.lr_scheduler,
|
873 |
+
optimizer=optimizer,
|
874 |
+
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
875 |
+
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
876 |
+
num_cycles=args.lr_num_cycles,
|
877 |
+
power=args.lr_power,
|
878 |
+
)
|
879 |
+
|
880 |
+
# Prepare everything with our `accelerator`.
|
881 |
+
transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
882 |
+
transformer, optimizer, train_dataloader, lr_scheduler
|
883 |
+
)
|
884 |
+
|
885 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
886 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
887 |
+
if overrode_max_train_steps:
|
888 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
889 |
+
# Afterwards we recalculate our number of training epochs
|
890 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
891 |
+
|
892 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
893 |
+
# The trackers initializes automatically on the main process.
|
894 |
+
if accelerator.is_main_process:
|
895 |
+
tracker_name = "dreambooth-sd3-lora-miniature"
|
896 |
+
accelerator.init_trackers(tracker_name, config=vars(args))
|
897 |
+
|
898 |
+
# Train!
|
899 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
900 |
+
|
901 |
+
logger.info("***** Running training *****")
|
902 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
903 |
+
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
|
904 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
905 |
+
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
906 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
907 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
908 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
909 |
+
global_step = 0
|
910 |
+
first_epoch = 0
|
911 |
+
|
912 |
+
# Potentially load in the weights and states from a previous save
|
913 |
+
if args.resume_from_checkpoint:
|
914 |
+
if args.resume_from_checkpoint != "latest":
|
915 |
+
path = os.path.basename(args.resume_from_checkpoint)
|
916 |
+
else:
|
917 |
+
# Get the mos recent checkpoint
|
918 |
+
dirs = os.listdir(args.output_dir)
|
919 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
920 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
921 |
+
path = dirs[-1] if len(dirs) > 0 else None
|
922 |
+
|
923 |
+
if path is None:
|
924 |
+
accelerator.print(
|
925 |
+
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
926 |
+
)
|
927 |
+
args.resume_from_checkpoint = None
|
928 |
+
initial_global_step = 0
|
929 |
+
else:
|
930 |
+
accelerator.print(f"Resuming from checkpoint {path}")
|
931 |
+
accelerator.load_state(os.path.join(args.output_dir, path))
|
932 |
+
global_step = int(path.split("-")[1])
|
933 |
+
|
934 |
+
initial_global_step = global_step
|
935 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
936 |
+
|
937 |
+
else:
|
938 |
+
initial_global_step = 0
|
939 |
+
|
940 |
+
progress_bar = tqdm(
|
941 |
+
range(0, args.max_train_steps),
|
942 |
+
initial=initial_global_step,
|
943 |
+
desc="Steps",
|
944 |
+
# Only show the progress bar once on each machine.
|
945 |
+
disable=not accelerator.is_local_main_process,
|
946 |
+
)
|
947 |
+
|
948 |
+
def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
|
949 |
+
sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype)
|
950 |
+
schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device)
|
951 |
+
timesteps = timesteps.to(accelerator.device)
|
952 |
+
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
|
953 |
+
|
954 |
+
sigma = sigmas[step_indices].flatten()
|
955 |
+
while len(sigma.shape) < n_dim:
|
956 |
+
sigma = sigma.unsqueeze(-1)
|
957 |
+
return sigma
|
958 |
+
|
959 |
+
for epoch in range(first_epoch, args.num_train_epochs):
|
960 |
+
transformer.train()
|
961 |
+
|
962 |
+
for step, batch in enumerate(train_dataloader):
|
963 |
+
models_to_accumulate = [transformer]
|
964 |
+
with accelerator.accumulate(models_to_accumulate):
|
965 |
+
pixel_values = batch["pixel_values"].to(dtype=vae.dtype)
|
966 |
+
|
967 |
+
# Convert images to latent space
|
968 |
+
model_input = vae.encode(pixel_values).latent_dist.sample()
|
969 |
+
model_input = model_input * vae.config.scaling_factor
|
970 |
+
model_input = model_input.to(dtype=weight_dtype)
|
971 |
+
|
972 |
+
# Sample noise that we'll add to the latents
|
973 |
+
noise = torch.randn_like(model_input)
|
974 |
+
bsz = model_input.shape[0]
|
975 |
+
|
976 |
+
# Sample a random timestep for each image
|
977 |
+
# for weighting schemes where we sample timesteps non-uniformly
|
978 |
+
u = compute_density_for_timestep_sampling(
|
979 |
+
weighting_scheme=args.weighting_scheme,
|
980 |
+
batch_size=bsz,
|
981 |
+
logit_mean=args.logit_mean,
|
982 |
+
logit_std=args.logit_std,
|
983 |
+
mode_scale=args.mode_scale,
|
984 |
+
)
|
985 |
+
indices = (u * noise_scheduler_copy.config.num_train_timesteps).long()
|
986 |
+
timesteps = noise_scheduler_copy.timesteps[indices].to(device=model_input.device)
|
987 |
+
|
988 |
+
# Add noise according to flow matching.
|
989 |
+
sigmas = get_sigmas(timesteps, n_dim=model_input.ndim, dtype=model_input.dtype)
|
990 |
+
noisy_model_input = sigmas * noise + (1.0 - sigmas) * model_input
|
991 |
+
|
992 |
+
# Predict the noise residual
|
993 |
+
prompt_embeds, pooled_prompt_embeds = batch["prompt_embeds"], batch["pooled_prompt_embeds"]
|
994 |
+
prompt_embeds = prompt_embeds.to(device=accelerator.device, dtype=weight_dtype)
|
995 |
+
pooled_prompt_embeds = pooled_prompt_embeds.to(device=accelerator.device, dtype=weight_dtype)
|
996 |
+
model_pred = transformer(
|
997 |
+
hidden_states=noisy_model_input,
|
998 |
+
timestep=timesteps,
|
999 |
+
encoder_hidden_states=prompt_embeds,
|
1000 |
+
pooled_projections=pooled_prompt_embeds,
|
1001 |
+
return_dict=False,
|
1002 |
+
)[0]
|
1003 |
+
|
1004 |
+
# Follow: Section 5 of https://arxiv.org/abs/2206.00364.
|
1005 |
+
# Preconditioning of the model outputs.
|
1006 |
+
model_pred = model_pred * (-sigmas) + noisy_model_input
|
1007 |
+
|
1008 |
+
# these weighting schemes use a uniform timestep sampling
|
1009 |
+
# and instead post-weight the loss
|
1010 |
+
weighting = compute_loss_weighting_for_sd3(weighting_scheme=args.weighting_scheme, sigmas=sigmas)
|
1011 |
+
|
1012 |
+
# flow matching loss
|
1013 |
+
target = model_input
|
1014 |
+
|
1015 |
+
# Compute regular loss.
|
1016 |
+
loss = torch.mean(
|
1017 |
+
(weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1),
|
1018 |
+
1,
|
1019 |
+
)
|
1020 |
+
loss = loss.mean()
|
1021 |
+
|
1022 |
+
accelerator.backward(loss)
|
1023 |
+
if accelerator.sync_gradients:
|
1024 |
+
params_to_clip = transformer_lora_parameters
|
1025 |
+
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
1026 |
+
|
1027 |
+
optimizer.step()
|
1028 |
+
lr_scheduler.step()
|
1029 |
+
optimizer.zero_grad()
|
1030 |
+
|
1031 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
1032 |
+
if accelerator.sync_gradients:
|
1033 |
+
progress_bar.update(1)
|
1034 |
+
global_step += 1
|
1035 |
+
|
1036 |
+
if accelerator.is_main_process:
|
1037 |
+
if global_step % args.checkpointing_steps == 0:
|
1038 |
+
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
|
1039 |
+
if args.checkpoints_total_limit is not None:
|
1040 |
+
checkpoints = os.listdir(args.output_dir)
|
1041 |
+
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
|
1042 |
+
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
|
1043 |
+
|
1044 |
+
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
|
1045 |
+
if len(checkpoints) >= args.checkpoints_total_limit:
|
1046 |
+
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
|
1047 |
+
removing_checkpoints = checkpoints[0:num_to_remove]
|
1048 |
+
|
1049 |
+
logger.info(
|
1050 |
+
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
1051 |
+
)
|
1052 |
+
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
|
1053 |
+
|
1054 |
+
for removing_checkpoint in removing_checkpoints:
|
1055 |
+
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
|
1056 |
+
shutil.rmtree(removing_checkpoint)
|
1057 |
+
|
1058 |
+
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
1059 |
+
accelerator.save_state(save_path)
|
1060 |
+
logger.info(f"Saved state to {save_path}")
|
1061 |
+
|
1062 |
+
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
1063 |
+
progress_bar.set_postfix(**logs)
|
1064 |
+
accelerator.log(logs, step=global_step)
|
1065 |
+
|
1066 |
+
if global_step >= args.max_train_steps:
|
1067 |
+
break
|
1068 |
+
|
1069 |
+
if accelerator.is_main_process:
|
1070 |
+
if args.validation_prompt is not None and epoch % args.validation_epochs == 0:
|
1071 |
+
pipeline = StableDiffusion3Pipeline.from_pretrained(
|
1072 |
+
args.pretrained_model_name_or_path,
|
1073 |
+
vae=vae,
|
1074 |
+
transformer=accelerator.unwrap_model(transformer),
|
1075 |
+
revision=args.revision,
|
1076 |
+
variant=args.variant,
|
1077 |
+
torch_dtype=weight_dtype,
|
1078 |
+
)
|
1079 |
+
pipeline_args = {"prompt": args.validation_prompt}
|
1080 |
+
images = log_validation(
|
1081 |
+
pipeline=pipeline,
|
1082 |
+
args=args,
|
1083 |
+
accelerator=accelerator,
|
1084 |
+
pipeline_args=pipeline_args,
|
1085 |
+
epoch=epoch,
|
1086 |
+
)
|
1087 |
+
torch.cuda.empty_cache()
|
1088 |
+
gc.collect()
|
1089 |
+
|
1090 |
+
# Save the lora layers
|
1091 |
+
accelerator.wait_for_everyone()
|
1092 |
+
if accelerator.is_main_process:
|
1093 |
+
transformer = unwrap_model(transformer)
|
1094 |
+
transformer = transformer.to(torch.float32)
|
1095 |
+
transformer_lora_layers = get_peft_model_state_dict(transformer)
|
1096 |
+
|
1097 |
+
StableDiffusion3Pipeline.save_lora_weights(
|
1098 |
+
save_directory=args.output_dir,
|
1099 |
+
transformer_lora_layers=transformer_lora_layers,
|
1100 |
+
)
|
1101 |
+
|
1102 |
+
# Final inference
|
1103 |
+
# Load previous pipeline
|
1104 |
+
pipeline = StableDiffusion3Pipeline.from_pretrained(
|
1105 |
+
args.pretrained_model_name_or_path,
|
1106 |
+
revision=args.revision,
|
1107 |
+
variant=args.variant,
|
1108 |
+
torch_dtype=weight_dtype,
|
1109 |
+
)
|
1110 |
+
# load attention processors
|
1111 |
+
pipeline.load_lora_weights(args.output_dir)
|
1112 |
+
|
1113 |
+
# run inference
|
1114 |
+
images = []
|
1115 |
+
if args.validation_prompt and args.num_validation_images > 0:
|
1116 |
+
pipeline_args = {"prompt": args.validation_prompt}
|
1117 |
+
images = log_validation(
|
1118 |
+
pipeline=pipeline,
|
1119 |
+
args=args,
|
1120 |
+
accelerator=accelerator,
|
1121 |
+
pipeline_args=pipeline_args,
|
1122 |
+
epoch=epoch,
|
1123 |
+
is_final_validation=True,
|
1124 |
+
)
|
1125 |
+
|
1126 |
+
if args.push_to_hub:
|
1127 |
+
save_model_card(
|
1128 |
+
repo_id,
|
1129 |
+
images=images,
|
1130 |
+
base_model=args.pretrained_model_name_or_path,
|
1131 |
+
instance_prompt=args.instance_prompt,
|
1132 |
+
validation_prompt=args.validation_prompt,
|
1133 |
+
repo_folder=args.output_dir,
|
1134 |
+
)
|
1135 |
+
upload_folder(
|
1136 |
+
repo_id=repo_id,
|
1137 |
+
folder_path=args.output_dir,
|
1138 |
+
commit_message="End of training",
|
1139 |
+
ignore_patterns=["step_*", "epoch_*"],
|
1140 |
+
)
|
1141 |
+
|
1142 |
+
accelerator.end_training()
|
1143 |
+
|
1144 |
+
|
1145 |
+
if __name__ == "__main__":
|
1146 |
+
args = parse_args()
|
1147 |
+
main(args)
|