File size: 4,453 Bytes
d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 cc29489 d7c46d2 d0e2f1e d7c46d2 3f95002 d7c46d2 cc29489 3f95002 d7c46d2 3f95002 d7c46d2 cc29489 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 c084d97 cc29489 c084d97 c380b6b c084d97 c380b6b cc29489 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
---
base_model: stabilityai/stable-diffusion-3-medium-diffusers
library_name: diffusers
license: openrail++
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-3
- stable-diffusion-3-diffusers
instance_prompt: <leaf microstructure>
widget: []
---
# Stable Diffusion 3 Medium Fine-tuned with Leaf Images
<Gallery />
## Model description
These are LoRA adaption weights for stabilityai/stable-diffusion-3-medium-diffusers.
## Trigger keywords
The following image were used during fine-tuning using the keyword \<leaf microstructure\>:
![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F623ce1c6b66fedf374859fe7%2FsI_exTnLy6AtOFDX1-7eq.png%3C%2Fspan%3E)
You should use <leaf microstructure> to trigger the image generation.
## How to use
Defining some helper functions:
```python
from diffusers import DiffusionPipeline
import torch
import os
from datetime import datetime
from PIL import Image
def generate_filename(base_name, extension=".png"):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
return f"{base_name}_{timestamp}{extension}"
def save_image(image, directory, base_name="image_grid"):
filename = generate_filename(base_name)
file_path = os.path.join(directory, filename)
image.save(file_path)
print(f"Image saved as {file_path}")
def image_grid(imgs, rows, cols, save=True, save_dir='generated_images', base_name="image_grid",
save_individual_files=False):
if not os.path.exists(save_dir):
os.makedirs(save_dir)
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols * w, rows * h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
if save_individual_files:
save_image(img, save_dir, base_name=base_name+f'_{i}-of-{len(imgs)}_')
if save and save_dir:
save_image(grid, save_dir, base_name)
return grid
```
### Text-to-image
Model loading and generation pipeline:
```python
repo_id_load='lamm-mit/stable-diffusion-3-medium-leaf-inspired'
pipeline = DiffusionPipeline.from_pretrained ("stabilityai/stable-diffusion-3-medium-diffusers",
torch_dtype=torch.float16
)
pipeline.load_lora_weights(repo_id_load)
pipeline=pipeline.to('cuda')
prompt = "a cube in the shape of a <leaf microstructure>"
negative_prompt = ""
num_samples = 3
num_rows = 3
n_steps=75
guidance_scale=15
all_images = []
for _ in range(num_rows):
image = pipeline(prompt,num_inference_steps=n_steps,num_images_per_prompt=num_samples,
guidance_scale=guidance_scale,negative_prompt=negative_prompt).images
all_images.extend(image)
grid = image_grid(all_images, num_rows, num_samples,
save_individual_files=True,
save_dir='generated_images',
base_name="image_grid",
)
grid
```
![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F623ce1c6b66fedf374859fe7%2Fqk5kRJJmetvhZ0ctltc3z.png%3C%2Fspan%3E)
### Image-to-image
We start with this image generated earlier:
![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F623ce1c6b66fedf374859fe7%2FJYVEhq6yqVtG_MHup3rDb.png%3C%2Fspan%3E)
```python
from diffusers import StableDiffusion3Img2ImgPipeline
from diffusers.utils import load_image
pipeline = StableDiffusion3Img2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
pipeline=pipeline.to('cuda')
init_image = load_image("https://huggingface.co/lamm-mit/stable-diffusion-3-medium-leaf-inspired/resolve/main/image_20240721_212111.png")
prompt = "Turn this image into a spider web."
negative_prompt=""
n_steps=20
guidance_scale=25
image = pipeline(prompt, num_inference_steps=n_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
image=init_image,
).images[0]
save_image(image, directory='generated_images', base_name="image_grid", )
image
```
![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F623ce1c6b66fedf374859fe7%2FkI-lx0UCFBErbdUIMn-cG.png%3C%2Fspan%3E)
## More examples
![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F623ce1c6b66fedf374859fe7%2FcX1W68vzYmdBwNgXKVNsO.png%3C%2Fspan%3E)
|