File size: 3,180 Bytes
d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 d7c46d2 3f95002 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
---
base_model: stabilityai/stable-diffusion-3-medium-diffusers
library_name: diffusers
license: openrail++
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-3
- stable-diffusion-3-diffusers
instance_prompt: <leaf microstructure>
widget: []
---
# Stable Diffusion 3 Medium Fine-tuned with Leaf Images
<Gallery />
## Model description
These are LoRA adaption weights for stabilityai/stable-diffusion-3-medium-diffusers.
## Trigger words
The following image were used during fine-tuning using the keyword <leaf microstructure>:
![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F623ce1c6b66fedf374859fe7%2FsI_exTnLy6AtOFDX1-7eq.png%3C%2Fspan%3E)
You should use <leaf microstructure> to trigger the image generation.
#### How to use
Defining some helper functions:
```python
from diffusers import DiffusionPipeline
import torch
import os
from datetime import datetime
from PIL import Image
def generate_filename(base_name, extension=".png"):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
return f"{base_name}_{timestamp}{extension}"
def save_image(image, directory, base_name="image_grid"):
filename = generate_filename(base_name)
file_path = os.path.join(directory, filename)
image.save(file_path)
print(f"Image saved as {file_path}")
def image_grid(imgs, rows, cols, save=True, save_dir='generated_images', base_name="image_grid",
save_individual_files=False):
if not os.path.exists(save_dir):
os.makedirs(save_dir)
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols * w, rows * h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
if save_individual_files:
save_image(img, save_dir, base_name=base_name+f'_{i}-of-{len(imgs)}_')
if save and save_dir:
save_image(grid, save_dir, base_name)
return grid
```
Model loading and generation pipeline:
```python
repo_id_load='lamm-mit/stable-diffusion-3-medium-leaf-inspired'
pipeline = DiffusionPipeline.from_pretrained ("stabilityai/stable-diffusion-3-medium-diffusers",
torch_dtype=torch.float16
)
pipeline.load_lora_weights(repo_id_load)
pipeline=pipeline.to('cuda')
prompt = "a cube in the shape of a <leaf microstructure>"
negative_prompt = ""
num_samples = 3
num_rows = 3
n_steps=75
guidance_scale=15
all_images = []
for _ in range(num_rows):
image = pipeline(prompt,num_inference_steps=n_steps,num_images_per_prompt=num_samples,
guidance_scale=guidance_scale,negative_prompt=negative_prompt).images
all_images.extend(image)
grid = image_grid(all_images, num_rows, num_samples,
save_individual_files=True,
save_dir='generated_images',
base_name="image_grid",
)
grid
```
![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F623ce1c6b66fedf374859fe7%2Fqk5kRJJmetvhZ0ctltc3z.png%3C%2Fspan%3E)
|