File size: 7,279 Bytes
8e87a4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c2146b
b5e4a48
 
 
 
 
 
 
 
 
 
 
5c2146b
 
8e87a4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5e4a48
8e87a4d
 
b5e4a48
 
 
 
8e87a4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
---
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
widget:
- text: Atlanta Games silver medal winner Edwards has called on other leading athletes
    to take part in the Sarajevo meeting--a goodwill gesture towards Bosnia as it
    recovers from the war in the Balkans--two days after the grand prix final in Milan.
- text: Portsmouth:Middlesex 199 and 426 (J. Pooley 111,M. Ramprakash 108,M. Gatting
    83), Hampshire 232 and 109-5.
- text: Poland's Foreign Minister Dariusz Rosati will visit Yugoslavia on September
    3 and 4 to revive a dialogue between the two governments which was effectively
    frozen in 1992,PAP news agency reported on Friday.
- text: The authorities are apparently extremely afraid of any political and social
    discontent," said Xiao,in Manila to attend an Amnesty International conference
    on human rights in China.
- text: American Nate Miller successfully defended his WBA cruiserweight title when
    he knocked out compatriot James Heath in the seventh round of their bout on Saturday.
pipeline_tag: token-classification
model-index:
- name: SpanMarker
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      name: Unknown
      type: conll2003
      split: eval
    metrics:
    - type: f1
      value: 0.9550004205568171
      name: F1
    - type: precision
      value: 0.9542780299209951
      name: Precision
    - type: recall
      value: 0.9557239057239058
      name: Recall
---

# SpanMarker

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [conll2003](https://huggingface.co/datasets/conll2003) dataset that can be used for Named Entity Recognition.

## Model Details

Important Note: I used the Tokenizer from "roberta-base".
```diff
from span_marker import SpanMarkerModel
from span_marker.tokenizer import SpanMarkerTokenizer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("lambdavi/span-marker-luke-base-conll2003")
+tokenizer = SpanMarkerTokenizer.from_pretrained("roberta-base", config=model.tokenizer.config)
+model.set_tokenizer(tokenizer)

# Run inference
entities = model.predict("Portsmouth:Middlesex 199 and 426 (J. Pooley 111,M. Ramprakash 108,M. Gatting 83), Hampshire 232 and 109-5.")
```

### Model Description
- **Model Type:** SpanMarker
<!-- - **Encoder:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 512 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [conll2003](https://huggingface.co/datasets/conll2003)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)

### Model Labels
| Label | Examples                                                      |
|:------|:--------------------------------------------------------------|
| LOC   | "Germany", "BRUSSELS", "Britain"                              |
| MISC  | "German", "British", "EU-wide"                                |
| ORG   | "European Commission", "EU", "European Union"                 |
| PER   | "Werner Zwingmann", "Nikolaus van der Pas", "Peter Blackburn" |

## Uses

### Direct Use for Inference

```python
from span_marker import SpanMarkerModel
from span_marker.tokenizer import SpanMarkerTokenizer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("lambdavi/span-marker-luke-base-conll2003")
tokenizer = SpanMarkerTokenizer.from_pretrained("roberta-base", config=model.tokenizer.config)
model.set_tokenizer(tokenizer)

# Run inference
entities = model.predict("Portsmouth:Middlesex 199 and 426 (J. Pooley 111,M. Ramprakash 108,M. Gatting 83), Hampshire 232 and 109-5.")
```

### Downstream Use
You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

```python
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")
```
</details>

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set          | Min | Median  | Max |
|:----------------------|:----|:--------|:----|
| Sentence length       | 1   | 14.5019 | 113 |
| Entities per sentence | 0   | 1.6736  | 20  |

### Training Hyperparameters
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training Results
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:-----:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 1.0   | 883  | 0.0123          | 0.9293               | 0.9274            | 0.9284        | 0.9848              |
| 2.0   | 1766 | 0.0089          | 0.9412               | 0.9456            | 0.9434        | 0.9882              |
| 3.0   | 2649 | 0.0077          | 0.9499               | 0.9505            | 0.9502        | 0.9893              |
| 4.0   | 3532 | 0.0070          | 0.9527               | 0.9537            | 0.9532        | 0.9900              |
| 5.0   | 4415 | 0.0068          | 0.9543               | 0.9557            | 0.9550        | 0.9902              |

### Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.36.0
- PyTorch: 2.0.0
- Datasets: 2.16.1
- Tokenizers: 0.15.0

## Citation

### BibTeX
```
@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->