--- license: mit --- ## [miniCTX: Neural Theorem Proving with (Long-)Contexts]() State-tactic model from [miniCTX: Neural Theorem Proving with (Long-)Contexts](). - Base language model: `deepseek-ai/deepseek-coder-1.3b-base` - Data: [ntp-mathlib-instruct-st](https://huggingface.co/datasets/l3lab/ntp-mathlib-instruct-st) It is specifically finetuned for Lean 4 tactic prediction given proof states. #### Performance Please see our paper. #### Example input ``` /- You are proving a theorem in Lean 4. You are given the following information: - The current proof state, inside [STATE]...[/STATE] Your task is to generate the next tactic in the proof. Put the next tactic inside [TAC]...[/TAC] -/ [STATE] m n : ℕ h : Nat.Coprime m n ⊢ Nat.gcd m n = 1 [/STATE] [TAC] ``` #### Example output ``` rw [Nat.Coprime] at h [/TAC] ``` #### Citation Please cite: ``` @misc{hu2024minictx, title={miniCTX: Neural Theorem Proving with (Long-)Contexts}, author={Jiewen Hu and Thomas Zhu and Sean Welleck}, year={2024}, eprint={2408.03350}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2408.03350}, } ```