File size: 7,733 Bytes
4514962 1fa048c 4514962 1fa048c 4514962 1fa048c 4514962 27dd6fa 1fa048c 4514962 8e609bc 1b7e6d2 1fa048c 670b814 1fa048c 4514962 21357b9 b07ef91 21357b9 b07ef91 21357b9 45f85b3 4514962 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
---
pipeline_tag: sentence-similarity
license: cc-by-4.0
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
language:
- multilingual
- en
- hi
- mr
- kn
- ta
- te
- ml
- gu
- or
- pa
- bn
widget:
- source_sentence: "दिवाळी आपण मोठ्या उत्साहाने साजरी करतो"
sentences:
- "दिवाळी आपण आनंदाने साजरी करतो"
- "दिवाळी हा दिव्यांचा सण आहे"
example_title: "Monolingual- Marathi"
- source_sentence: "हम दीपावली उत्साह के साथ मनाते हैं"
sentences:
- "हम दीपावली खुशियों से मनाते हैं"
- "दिवाली रोशनी का त्योहार है"
example_title: "Monolingual- Hindi"
- source_sentence: "અમે ઉત્સાહથી દિવાળી ઉજવીએ છીએ"
sentences:
- "દિવાળી આપણે ખુશીઓથી ઉજવીએ છીએ"
- "દિવાળી એ રોશનીનો તહેવાર છે"
example_title: "Monolingual- Gujarati"
- source_sentence: "आम्हाला भारतीय असल्याचा अभिमान आहे"
sentences:
- "हमें भारतीय होने पर गर्व है"
- "భారతీయులమైనందుకు గర్విస్తున్నాం"
- "અમને ભારતીય હોવાનો ગર્વ છે"
example_title: "Cross-lingual 1"
- source_sentence: "ਬਾਰਿਸ਼ ਤੋਂ ਬਾਅਦ ਬਗੀਚਾ ਸੁੰਦਰ ਦਿਖਾਈ ਦਿੰਦਾ ਹੈ"
sentences:
- "മഴയ്ക്ക് ശേഷം പൂന്തോട്ടം മനോഹരമായി കാണപ്പെടുന്നു"
- "ବର୍ଷା ପରେ ବଗିଚା ସୁନ୍ଦର ଦେଖାଯାଏ |"
- "बारिश के बाद बगीचा सुंदर दिखता है"
example_title: "Cross-lingual 2"
---
# IndicSBERT-STS
This is a IndicSBERT model (<a href='https://huggingface.co/l3cube-pune/indic-sentence-bert-nli'>l3cube-pune/indic-sentence-bert-nli</a>) trained on the STS dataset of ten major Indian Languages. <br>
The single model works for English, Hindi, Marathi, Kannada, Tamil, Telugu, Gujarati, Oriya, Punjabi, Malayalam, and Bengali.
The model also has cross-lingual capabilities. <br>
Released as a part of project MahaNLP: https://github.com/l3cube-pune/MarathiNLP <br>
Generic Indic Sentence BERT model is shared here : <a href='https://huggingface.co/l3cube-pune/indic-sentence-bert-nli'>l3cube-pune/indic-sentence-bert-nli</a> <br>
More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2304.11434)
```
@article{deode2023l3cube,
title={L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT},
author={Deode, Samruddhi and Gadre, Janhavi and Kajale, Aditi and Joshi, Ananya and Joshi, Raviraj},
journal={arXiv preprint arXiv:2304.11434},
year={2023}
}
```
<a href='https://arxiv.org/abs/2211.11187'> monolingual Indic SBERT paper </a> <br>
<a href='https://arxiv.org/abs/2304.11434'> multilingual Indic SBERT paper </a>
Other Monolingual similarity models are listed below: <br>
<a href='https://huggingface.co/l3cube-pune/marathi-sentence-similarity-sbert'> Marathi Similarity </a> <br>
<a href='https://huggingface.co/l3cube-pune/hindi-sentence-similarity-sbert'> Hindi Similarity </a> <br>
<a href='https://huggingface.co/l3cube-pune/kannada-sentence-similarity-sbert'> Kannada Similarity </a> <br>
<a href='https://huggingface.co/l3cube-pune/telugu-sentence-similarity-sbert'> Telugu Similarity </a> <br>
<a href='https://huggingface.co/l3cube-pune/malayalam-sentence-similarity-sbert'> Malayalam Similarity </a> <br>
<a href='https://huggingface.co/l3cube-pune/tamil-sentence-similarity-sbert'> Tamil Similarity </a> <br>
<a href='https://huggingface.co/l3cube-pune/gujarati-sentence-similarity-sbert'> Gujarati Similarity </a> <br>
<a href='https://huggingface.co/l3cube-pune/odia-sentence-similarity-sbert'> Oriya Similarity </a> <br>
<a href='https://huggingface.co/l3cube-pune/bengali-sentence-similarity-sbert'> Bengali Similarity </a> <br>
<a href='https://huggingface.co/l3cube-pune/punjabi-sentence-similarity-sbert'> Punjabi Similarity </a> <br>
<a href='https://huggingface.co/l3cube-pune/indic-sentence-similarity-sbert'> Indic Similarity (multilingual)</a> <br>
Other Monolingual Indic sentence BERT models are listed below: <br>
<a href='https://huggingface.co/l3cube-pune/marathi-sentence-bert-nli'> Marathi SBERT</a> <br>
<a href='https://huggingface.co/l3cube-pune/hindi-sentence-bert-nli'> Hindi SBERT</a> <br>
<a href='https://huggingface.co/l3cube-pune/kannada-sentence-bert-nli'> Kannada SBERT</a> <br>
<a href='https://huggingface.co/l3cube-pune/telugu-sentence-bert-nli'> Telugu SBERT</a> <br>
<a href='https://huggingface.co/l3cube-pune/malayalam-sentence-bert-nli'> Malayalam SBERT</a> <br>
<a href='https://huggingface.co/l3cube-pune/tamil-sentence-bert-nli'> Tamil SBERT</a> <br>
<a href='https://huggingface.co/l3cube-pune/gujarati-sentence-bert-nli'> Gujarati SBERT</a> <br>
<a href='https://huggingface.co/l3cube-pune/odia-sentence-bert-nli'> Oriya SBERT</a> <br>
<a href='https://huggingface.co/l3cube-pune/bengali-sentence-bert-nli'> Bengali SBERT</a> <br>
<a href='https://huggingface.co/l3cube-pune/punjabi-sentence-bert-nli'> Punjabi SBERT</a> <br>
<a href='https://huggingface.co/l3cube-pune/indic-sentence-bert-nli'> Indic SBERT (multilingual)</a> <br>
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
|