--- language: - ko datasets: - kyujinpy/KOR-gugugu-platypus-set library_name: transformers pipeline_tag: text-generation license: cc-by-nc-sa-4.0 --- # **Ko-PlatYi-6B-gu** ## Model Details **Model Developers** Kyujin Han (kyujinpy) **Input** Models input text only. **Output** Models generate text only. **Model Architecture** Ko-PlatYi-6B-gu is an auto-regressive language model based on the Yi-34B transformer architecture. **Blog Link** Blog: [Coming soon...] Github: [Coming soon...] **Base Model** [beomi/Yi-Ko-6B](https://huggingface.co/beomi/Yi-Ko-6B) **Training Dataset** [kyujinpy/KOR-gugugu-platypus-set](https://huggingface.co/datasets/kyujinpy/KOR-gugugu-platypus-set). # **Model Benchmark** ## Open leaderboard > Follow up as [link](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard). | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | CommonGen-V2 | | --- | --- | --- | --- | --- | --- | --- | | Ko-PlatYi-6B-O | 49.00 | 43.52 | 53.59 | 47.47 | 41.01 | 59.39 | | Ko-PlatYi-6B-kiwi | 48.75 | 41.98 | 53.61 | 46.10 | 38.30 | 63.75 | | **Ko-PlatYi-6B-gu** | 48.76 | 42.75 | 54.00 | 44.66 | 41.22 | 61.16 | | Ko-PlatYi-6B | 49.97 | 43.00 | 53.55 | 46.50 | 40.31 | 66.47 | | Yi-Ko-6B | 48.79 | 41.04 | 53.39 | 46.28 | 41.64 | 61.63 | --- ## AI-Harness Evaluation > AI-Harness evaluation; [link](https://github.com/Beomi/ko-lm-evaluation-harness) | Model | BoolQ | Copa | HellaSwag | Sentineg | | --- | --- | --- | --- | --- | | | *Zero-shot* |||| | Ko-PlatYi-6B-O | 0.3343 | 0.7687 | 0.4833 | 0.5794 | | Ko-PlatYi-6B-kiwi | 0.3343 | 0.7665 | 0.4746 | **0.6248** | | **Ko-PlatYi-6B-gu** | **0.7077** | **0.7696** | 0.4797 | 0.3979 | | Ko-PlatYi-6B | 0.3343 | 0.7684 | **0.4917** | 0.5226 | | Yi-Ko-6B | **0.7070** | 0.7696 | **0.5009** | 0.4044 | --- # Implementation Code ```python ### KO-Platypus from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "kyujinpy/Ko-PlatYi-6B-gu" OpenOrca = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) ``` ---