--- language: - en - ko datasets: - kyujinpy/KOpen-platypus library_name: transformers pipeline_tag: text-generation license: cc-by-nc-4.0 --- # **Ko-Platypus2-13B** **More detail repo(Github): [KO-Platypus](https://github.com/Marker-Inc-Korea/KO-Platypus)** ![KO-Platypus2-13B](./KO_platypus.png) ## Model Details **Model Developers** Kyujin Han (kyujinpy) **Input** Models input text only. **Output** Models generate text only. **Model Architecture** KO-Platypus2-13B is an auto-regressive language model based on the LLaMA2 transformer architecture. **Base Model** [hyunseoki/ko-en-llama2-13b](https://huggingface.co/hyunseoki/ko-en-llama2-13b) **Training Dataset** I use [KOpen-platypus](https://huggingface.co/datasets/kyujinpy/KOpen-platypus). It is high-quality korean translation dataset about [open-platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). I use A100 GPU 40GB and COLAB, when trianing. # **Model Benchmark** ## KO-LLM leaderboard - Follow up as [Open KO-LLM LeaderBoard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard). ![img](./leaderboard.png) | Model | Average |Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | | --- | --- | --- | --- | --- | --- | --- | | KO-Platypus2-13B(ours) | NaN | NaN | NaN | NaN | NaN | NaN | | [hyunseoki/ko-en-llama2-13b](https://huggingface.co/hyunseoki/ko-en-llama2-13b) | 46.68 | 42.15 | 54.23 | 38.90 | 40.74 | 57.39 | | [momo/polyglot-ko-12.8b-Chat-QLoRA-Merge](https://huggingface.co/momo/polyglot-ko-12.8b-Chat-QLoRA-Merge) | 45.71 | 35.49 | 49.93 | 25.97 | 39.43 | 77.70 | | [KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B) | 45.62 | 38.05 | 49.63 | 34.68 | 37.69 | 68.08 | | [DopeorNope/COLA3-7B](https://huggingface.co/DopeorNope/COLA3-7B) | 45.61 | 39.16 | 50.98 | 35.21 | 37.81 | 64.91 | > Compare with Top 4 SOTA models. (update: 10/03) --- # Implementation Code ```python ### KO-Platypus from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "kyujinpy/KO-Platypus2-13B" CoT-llama = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) CoT-llama_tokenizer = AutoTokenizer.from_pretrained(repo) ``` > Readme format: [kyujinpy/KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B) ---