File size: 2,593 Bytes
5823c1f 9e73c30 3a3b606 9e73c30 6212e04 9e73c30 7c01146 5823c1f 7c01146 9e73c30 bc17a70 9e73c30 e5b281c 4ba27ba 9e73c30 6212e04 9e73c30 4fcc3f7 14f27fe 6212e04 66bd4e7 9e73c30 2aba96a 9e73c30 4fcc3f7 ea346c8 4fcc3f7 d0a4220 4fcc3f7 d0a4220 4fcc3f7 ae5b2e3 4fcc3f7 9e73c30 2b30f1a 4fcc3f7 9e73c30 4fcc3f7 9e73c30 4fcc3f7 9e73c30 4fcc3f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
language:
- en
- ko
datasets:
- kyujinpy/KOpen-platypus
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
---
**(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다**
**The license is `cc-by-nc-sa-4.0`.**
# **Ko-Platypus2-13B**
![KO-Platypus2-13B](./KO_platypus.png)
## Model Details
**More detail repo(Github): [KO-Platypus](https://github.com/Marker-Inc-Korea/KO-Platypus)**
**Model Developers** Kyujin Han (kyujinpy)
**Input** Models input text only.
**Output** Models generate text only.
**Model Architecture**
KO-Platypus2-13B is an auto-regressive language model based on the LLaMA2 transformer architecture.
**Base Model** [hyunseoki/ko-en-llama2-13b](https://huggingface.co/hyunseoki/ko-en-llama2-13b)
**Training Dataset**
I use [KOpen-platypus](https://huggingface.co/datasets/kyujinpy/KOpen-platypus).
It is high-quality korean translation dataset about [open-platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus).
I use A100 GPU 40GB and COLAB, when trianing.
# **Model Benchmark**
## KO-LLM leaderboard
- Follow up as [Open KO-LLM LeaderBoard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard).
![img](./leaderboard.png)
| Model | Average |Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| --- | --- | --- | --- | --- | --- | --- |
| KO-Platypus2-13B(ours) | 47.90 | 44.20 | 54.31 | 42.47 | 44.41 | 54.11 |
| [hyunseoki/ko-en-llama2-13b](https://huggingface.co/hyunseoki/ko-en-llama2-13b) | 46.68 | 42.15 | 54.23 | 38.90 | 40.74 | 57.39 |
| [MarkrAI/kyujin-CoTy-platypus-ko-12.8b](https://huggingface.co/MarkrAI/kyujin-CoTy-platypus-ko-12.8b) | 46.44 | 34.98 | 49.11 | 25.68 | 37.59 | 84.86 |
| [momo/polyglot-ko-12.8b-Chat-QLoRA-Merge](https://huggingface.co/momo/polyglot-ko-12.8b-Chat-QLoRA-Merge) | 45.71 | 35.49 | 49.93 | 25.97 | 39.43 | 77.70 |
| [KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B) | 45.62 | 38.05 | 49.63 | 34.68 | 37.69 | 68.08 |
> Compare with Top 4 SOTA models. (update: 10/06)
---
# Implementation Code
```python
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "kyujinpy/KO-Platypus2-13B"
CoT-llama = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
CoT-llama_tokenizer = AutoTokenizer.from_pretrained(repo)
```
> Readme format: [kyujinpy/KoT-platypus2-7B](https://huggingface.co/kyujinpy/KoT-platypus2-7B)
--- |