File size: 2,190 Bytes
7f8453c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: cc-by-sa-4.0
base_model: klue/bert-base
tags:
- generated_from_trainer
datasets:
- klue
metrics:
- f1
model-index:
- name: bert-base-finetuned-ynat
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: klue
type: klue
config: ynat
split: validation
args: ynat
metrics:
- name: F1
type: f1
value: 0.8673393457362918
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-finetuned-ynat
This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3817
- F1: 0.8673
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 1
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 179 | 0.3817 | 0.8673 |
| No log | 2.0 | 358 | 0.4065 | 0.8634 |
| 0.2194 | 3.0 | 537 | 0.4077 | 0.8624 |
| 0.2194 | 4.0 | 716 | 0.4443 | 0.8584 |
| 0.2194 | 5.0 | 895 | 0.4795 | 0.8569 |
| 0.1477 | 6.0 | 1074 | 0.5159 | 0.8570 |
| 0.1477 | 7.0 | 1253 | 0.5445 | 0.8569 |
| 0.1477 | 8.0 | 1432 | 0.5711 | 0.8565 |
| 0.0849 | 9.0 | 1611 | 0.5913 | 0.8542 |
| 0.0849 | 10.0 | 1790 | 0.5945 | 0.8553 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|