File size: 17,941 Bytes
940284b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
---
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
widget:
structuredData:
x0:
- 0.6666666666666667
- 1.0
- 1.0
x1:
- 0.0
- 0.0
- 0.0
x10:
- 0.0
- 0.0
- 0.0
x11:
- 0.0
- 1.0
- 0.0
x12:
- 1.0
- 0.0
- 1.0
x13:
- 0.0
- 0.0
- 0.0
x14:
- 0.0
- 0.0
- 0.0
x15:
- 1.0
- 0.0
- 0.0
x16:
- 0.0
- 0.0
- 0.0
x17:
- 0.0
- 0.0
- 1.0
x18:
- 0.0
- 0.0
- 0.0
x19:
- 0.0
- 1.0
- 0.0
x2:
- 1.0
- 1.0
- 1.0
x20:
- 1.0
- 0.0
- 0.0
x21:
- 0.0
- 1.0
- 1.0
x22:
- 0.0
- 0.0
- 0.0
x23:
- 1.0
- 0.0
- 1.0
x24:
- 0.0
- 0.0
- 0.0
x25:
- 0.0
- 0.0
- 0.0
x26:
- 0.0
- 0.0
- 0.0
x27:
- 0.0
- 1.0
- 0.0
x3:
- 0.0
- 1.0
- 0.0
x4:
- 0.0
- 0.0
- 1.0
x5:
- 1.0
- 0.0
- 0.0
x6:
- 0.0
- 0.0
- 0.0
x7:
- 0.24999999999999997
- 0.14285714285714285
- 0.3571428571428571
x8:
- 0.4772654358070523
- 0.47033921746222385
- 0.32320252247170167
x9:
- 0.0
- 0.0
- 0.0
---
# Model description
This is a Random Forest model trained on entire set of features from data provided by Reunion.
## Intended uses & limitations
This model is not fine-tuned for production.
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cv | 3 |
| error_score | nan |
| estimator__bootstrap | True |
| estimator__ccp_alpha | 0.0 |
| estimator__class_weight | balanced |
| estimator__criterion | gini |
| estimator__max_depth | |
| estimator__max_features | auto |
| estimator__max_leaf_nodes | |
| estimator__max_samples | |
| estimator__min_impurity_decrease | 0.0 |
| estimator__min_impurity_split | |
| estimator__min_samples_leaf | 1 |
| estimator__min_samples_split | 2 |
| estimator__min_weight_fraction_leaf | 0.0 |
| estimator__n_estimators | 100 |
| estimator__n_jobs | -1 |
| estimator__oob_score | False |
| estimator__random_state | 42 |
| estimator__verbose | 1 |
| estimator__warm_start | False |
| estimator | RandomForestClassifier(class_weight='balanced', n_jobs=-1, random_state=42,
verbose=1) |
| n_iter | 100 |
| n_jobs | -1 |
| param_distributions | {'n_estimators': [200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000], 'max_features': ['auto', 'sqrt'], 'max_depth': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, None], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], 'bootstrap': [True, False]} |
| pre_dispatch | 2*n_jobs |
| random_state | 42 |
| refit | True |
| return_train_score | False |
| scoring | |
| verbose | 2 |
</details>
### Model Plot
The model plot is below.
<style>#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 {color: black;background-color: white;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 pre{padding: 0;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-toggleable {background-color: white;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.2em 0.3em;box-sizing: border-box;text-align: center;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;margin: 0.25em 0.25em;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-estimator:hover {background-color: #d4ebff;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-item {z-index: 1;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-parallel-item:only-child::after {width: 0;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0.2em;box-sizing: border-box;padding-bottom: 0.1em;background-color: white;position: relative;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-container {display: inline-block;position: relative;}</style><div id="sk-612ecc16-5410-4287-9cca-3bb6bb70aa61" class"sk-top-container"><div class="sk-container"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="e81b924e-93ea-42c0-84fd-af8e0ec97962" type="checkbox" ><label class="sk-toggleable__label" for="e81b924e-93ea-42c0-84fd-af8e0ec97962">RandomizedSearchCV</label><div class="sk-toggleable__content"><pre>RandomizedSearchCV(cv=3,estimator=RandomForestClassifier(class_weight='balanced',n_jobs=-1, random_state=42,verbose=1),n_iter=100, n_jobs=-1,param_distributions={'bootstrap': [True, False],'max_depth': [10, 20, 30, 40, 50, 60,70, 80, 90, 100, 110,None],'max_features': ['auto', 'sqrt'],'min_samples_leaf': [1, 2, 4],'min_samples_split': [2, 5, 10],'n_estimators': [200, 400, 600, 800,1000, 1200, 1400, 1600,1800, 2000]},random_state=42, verbose=2)</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="4a4e6c45-5264-4a41-8fbe-d7cb73b658bb" type="checkbox" ><label class="sk-toggleable__label" for="4a4e6c45-5264-4a41-8fbe-d7cb73b658bb">RandomForestClassifier</label><div class="sk-toggleable__content"><pre>RandomForestClassifier(class_weight='balanced', n_jobs=-1, random_state=42,verbose=1)</pre></div></div></div></div></div></div></div></div></div></div>
##Â Evaluation Results
You can find the details about evaluation process and the evaluation results.
| Metric | Value |
|----------|---------|
| accuracy | 0.705 |
| recall | 0.05 |
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
```python
import pickle
with open(dtc_pkl_filename, 'rb') as file:
clf = pickle.load(file)
```
</details>
# Model Card Authors
This model card is written by following authors:
kushkul
# Model Card Contact
You can contact the model card authors through following channels:
[More Information Needed]
# Citation
Below you can find information related to citation.
**BibTeX:**
```
bibtex
@inproceedings{...,year={2022}}
```
# Additional Content
## confusion_matrix
![confusion_matrix](confusion_matrix.png) |