File size: 3,353 Bytes
900c144
 
 
 
 
 
 
 
 
 
 
 
 
 
05afa0b
b9f37bf
05afa0b
 
900c144
fbe7a4b
 
900c144
c13dfe5
900c144
 
 
 
 
 
 
 
 
 
3c4bd05
2d819e4
3c4bd05
c13dfe5
3c4bd05
 
 
 
 
 
 
900c144
 
 
 
b9f37bf
900c144
 
 
 
 
b9f37bf
900c144
b9f37bf
c13dfe5
900c144
 
b9f37bf
900c144
 
 
 
b9f37bf
900c144
 
 
b9f37bf
900c144
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
datasets:
- maywell/korean_textbooks
language:
- ko
pipeline_tag: text-generation
tags:
- mamba
---
# **Mamba-ko-2.8B๐Ÿ**
![Mamba-ko-2.8B](./Seagull-mamba.png)
**Mamba-ko-2.8B** is the state space model, further pretrained(or continous trained) with synthetically generated dataset - [**korean_textbooks**](https://huggingface.co/datasets/maywell/korean_textbooks).

> If you're interested in building large-scale language models to solve a wide variety of problems in a wide variety of domains, you should consider joining [Allganize](https://allganize.career.greetinghr.com/o/65146).
For a coffee chat or if you have any questions, please do not hesitate to contact me as well! - [email protected]

I would like to thank Allganize Korea for their generosity in providing resources for this personal project. This project is not directly related to the company's goals or research.
## TODO
- ๐ŸŸข Training with korean_textbooks dataset - DONE

- More training with publicly available Korean corpora
- ๐ŸŸก Instruct tuning
## **What is Mamba?**
Mamba is a new state space model architecture showing promising performance on information-dense data such as language modeling, where previous subquadratic models fall short of Transformers. It is based on the line of progress on structured state space models, with an efficient hardware-aware design and implementation in the spirit of FlashAttention.
## **License**
Apache 2.0
## **Model Details**
#### **Developed by**
Jisoo Kim(kuotient)
#### **Base Model**  
[state-spaces/mamba-2.8b-slimpj](https://huggingface.co/state-spaces/mamba-2.8b-slimpj)  
## **Model Benchmark**
### KoBEST
| Model | boolq | copa | hellaswag | sentineg |
| --- | --- | --- | --- | --- |
| kuotient/mamba-ko-2.8b | 0.6213 | 0.6150 | 0.4014 | 0.3383 |
| state_spaces/mamba-2.8b-slimpj | 0.3343 | 0.4867 | 0.3452 | 0.3547 |
| kuotient/mamba-ko-2.8b-old (2B trained only) | 0.4236 | 0.5896 | 0.4012 | 0.4348 |
| kuotient/mamba-ko-2.8b-old-instruct | 0.4041 | 0.6505 | 0.4906 | 0.3348 |
| EleutherAI/polyglot-ko-1.3b | 0.3552 | 0.7196 | 0.5247 | 0.6790 |
| maywell/TinyWand-SFT | 0.3455 | 0.6142 | 0.3944 | N/A |
| microsoft/phi-2 | 0.3343 | 0.4792 | 0.3235 | N/A |
| TinyLlama/TinyLlama-1.1B | 0.3343 | 0.4784 | 0.3396 | N/A |
### Thanks
ํ•œ๊ตญ์–ด LLM ์ปค๋ฎค๋‹ˆํ‹ฐ์— ๋งŽ์€ ๊ธฐ์—ฌ์™€ ๋™๊ธฐ๋ถ€์—ฌ๋ฅผ ํ•ด์ฃผ๊ณ  ๊ณ„์‹  [maywell](https://huggingface.co/maywell)๋‹˜ ๊ฐ์‚ฌ๋“œ๋ฆฝ๋‹ˆ๋‹ค.
## Usage
```sh
pip install causal_conv1d>=1.1.0 mamba-ssm==1.1.1
```
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel

device = "cuda" if torch.cuda.is_available() else "cpu"

model_name = "kuotient/mamba-ko-2.8b"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token

model = MambaLMHeadModel.from_pretrained(
        model_name, device=device, dtype=torch.float16)

prompt = "์•„์ด๋“คํ•œํ…Œ ์ œ๊ณตํ•  ์˜์–‘๊ฐ€ ์žˆ๋Š” ์Œ์‹ 5๊ฐ€์ง€์˜ ์˜ˆ์‹œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค."

tokens = tokenizer(prompt, return_tensors='pt')
input_ids = tokens.input_ids.to(device)
streamer = TextStreamer(tokenizer)

out = model.generate(
    input_ids=input_ids,
    streamer=streamer,
    max_length=2000,
    temperature=0.7,
    top_p=0.7,
    eos_token_id=tokenizer.eos_token_id,
)
```