XLSR_300m_finetuned_cgn / finetuning_config.yaml
Jakob Poncelet
First model version
9fc3e44
# @package _group_
common:
memory_efficient_fp16: true
log_format: json
log_interval: 100
model_parallel_size: 1
checkpoint:
no_epoch_checkpoints: true
best_checkpoint_metric: wer
save_dir: /esat/spchtemp/scratch/jponcele/selfsupervised_exps/result/finetune_XLSR_300m_all
task:
_name: audio_pretraining
data: /users/spraak/jponcele/BenchmarkingSS/data/cgn_phone_10ms_w2v2_all
normalize: true #false
labels: ltr
segments: true
max_length: 800000
dataset:
num_workers: 6
batch_size: 4
max_tokens: 32000000
skip_invalid_size_inputs_valid_test: true
valid_subset: test
data_buffer_size: 2
distributed_training:
ddp_backend: legacy_ddp
distributed_world_size: 1
criterion:
_name: ctc
zero_infinity: true
optimization:
max_update: 500000 #80000
lr: [0.00003]
sentence_avg: true
update_freq: [4]
optimizer:
_name: adam
adam_betas: (0.9,0.98)
adam_eps: 1e-08
lr_scheduler:
_name: tri_stage
phase_ratio: [0.1, 0.4, 0.5]
final_lr_scale: 0.05
model:
_name: wav2vec_ctc
w2v_path: /esat/spchtemp/scratch/jponcele/pretrained_models/xlsr2_300m.pt
apply_mask: true
mask_prob: 0.65
mask_channel_prob: 0.5
mask_channel_length: 64
layerdrop: 0.1
activation_dropout: 0.1
feature_grad_mult: 0.0
freeze_finetune_updates: 0