Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- 2_Dense/config.json +1 -0
- 2_Dense/model.safetensors +3 -0
- Pipfile +11 -0
- README.md +32 -0
- added_tokens.json +5 -0
- backup/special_tokens_map.json +20 -0
- backup/tokenizer.json +3 -0
- backup/tokenizer_config.json +56 -0
- config.json +34 -0
- config_sentence_transformers.json +13 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +345 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +20 -0
- test.py +14 -0
- tokenization_qwen.py +267 -0
- tokenizer.json +0 -0
- tokenizer_config.json +47 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1536,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 1536, "out_features": 1024, "bias": true, "activation_function": "torch.nn.modules.linear.Identity"}
|
2_Dense/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3b63b4ca37aee58c47ae8ac58f05af96341e165971e6a99adc2cb0f5e0a8f58
|
3 |
+
size 6295712
|
Pipfile
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[[source]]
|
2 |
+
url = "https://pypi.org/simple"
|
3 |
+
verify_ssl = true
|
4 |
+
name = "pypi"
|
5 |
+
|
6 |
+
[packages]
|
7 |
+
|
8 |
+
[dev-packages]
|
9 |
+
|
10 |
+
[requires]
|
11 |
+
python_version = "3.12"
|
README.md
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- dunzhang/stella_en_1.5B_v5
|
7 |
+
library_name: sentence-transformers
|
8 |
+
pipeline_tag: sentence-similarity
|
9 |
+
tags:
|
10 |
+
- sentence-transformers
|
11 |
+
- sentence-similarity
|
12 |
+
- medical
|
13 |
+
- clinicaltrials
|
14 |
+
- cancer
|
15 |
+
- feature-extraction
|
16 |
+
- generated_from_trainer
|
17 |
+
- dataset_size:1395384
|
18 |
+
- loss:OnlineContrastiveLoss
|
19 |
+
- loss:MultipleNegativesRankingLoss
|
20 |
+
---
|
21 |
+
# SentenceTransformer
|
22 |
+
|
23 |
+
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
24 |
+
|
25 |
+
## Model Details
|
26 |
+
|
27 |
+
### Model Description
|
28 |
+
- **Model Type:** Sentence Transformer
|
29 |
+
<!-- - **Base model:** [dunzhang/stella_en_1.5B_v5](https://huggingface.co/dunzhang/stella_en_1.5B_v5) -->
|
30 |
+
- **Maximum Sequence Length:** 512 tokens
|
31 |
+
- **Output Dimensionality:** 1024 tokens
|
32 |
+
- **Similarity Function:** Cosine Similarity
|
added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
backup/special_tokens_map.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
}
|
20 |
+
}
|
backup/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8eab352ec6bb19236f8684bf40e504e86876bd4f2f43982b0561b2f07702666
|
3 |
+
size 11418805
|
backup/tokenizer_config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"additional_special_tokens": [
|
30 |
+
"<|im_start|>",
|
31 |
+
"<|im_end|>"
|
32 |
+
],
|
33 |
+
"auto_map": {
|
34 |
+
"AutoTokenizer": [
|
35 |
+
"tokenization_qwen.Qwen2Tokenizer",
|
36 |
+
"tokenization_qwen.Qwen2TokenizerFast"
|
37 |
+
]
|
38 |
+
},
|
39 |
+
"bos_token": null,
|
40 |
+
"chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
41 |
+
"clean_up_tokenization_spaces": false,
|
42 |
+
"eos_token": "<|endoftext|>",
|
43 |
+
"errors": "replace",
|
44 |
+
"max_length": 512,
|
45 |
+
"model_max_length": 512,
|
46 |
+
"pad_to_multiple_of": null,
|
47 |
+
"pad_token": "<|endoftext|>",
|
48 |
+
"pad_token_type_id": 0,
|
49 |
+
"padding_side": "left",
|
50 |
+
"split_special_tokens": false,
|
51 |
+
"stride": 0,
|
52 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
53 |
+
"truncation_side": "right",
|
54 |
+
"truncation_strategy": "longest_first",
|
55 |
+
"unk_token": null
|
56 |
+
}
|
config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "reranker_round1.model",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2Model"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoModel": "dunzhang/stella_en_1.5b_v5--modeling_qwen.Qwen2Model",
|
9 |
+
"AutoModelForCausalLM": "dunzhang/stella_en_1.5b_v5--modeling_qwen.Qwen2ForCausalLM",
|
10 |
+
"AutoModelForSequenceClassification": "dunzhang/stella_en_1.5b_v5--modeling_qwen.Qwen2ForSequenceClassification"
|
11 |
+
},
|
12 |
+
"bos_token_id": 151643,
|
13 |
+
"eos_token_id": 151643,
|
14 |
+
"hidden_act": "silu",
|
15 |
+
"hidden_size": 1536,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 8960,
|
18 |
+
"max_position_embeddings": 131072,
|
19 |
+
"max_window_layers": 21,
|
20 |
+
"model_type": "qwen2",
|
21 |
+
"num_attention_heads": 12,
|
22 |
+
"num_hidden_layers": 28,
|
23 |
+
"num_key_value_heads": 2,
|
24 |
+
"rms_norm_eps": 1e-06,
|
25 |
+
"rope_scaling": null,
|
26 |
+
"rope_theta": 1000000.0,
|
27 |
+
"sliding_window": null,
|
28 |
+
"tie_word_embeddings": false,
|
29 |
+
"torch_dtype": "float32",
|
30 |
+
"transformers_version": "4.45.2",
|
31 |
+
"use_cache": true,
|
32 |
+
"use_sliding_window": false,
|
33 |
+
"vocab_size": 151646
|
34 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.45.2",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {
|
8 |
+
"s2p_query": "Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: ",
|
9 |
+
"s2s_query": "Instruct: Retrieve semantically similar text.\nQuery: "
|
10 |
+
},
|
11 |
+
"default_prompt_name": null,
|
12 |
+
"similarity_fn_name": "cosine"
|
13 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69d74487fa399f069df4a729371169581c43f7d30ce4ede54cab549c8081cb0e
|
3 |
+
size 4994887136
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d984228e35c6b48621f15e90af3ffd386bedba69b73949aa84431282c38424d
|
3 |
+
size 1178224504
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6173075456
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"embed_tokens.weight": "model-00001-of-00002.safetensors",
|
7 |
+
"layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
13 |
+
"layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
16 |
+
"layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
18 |
+
"layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
25 |
+
"layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
28 |
+
"layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
30 |
+
"layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
37 |
+
"layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
40 |
+
"layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
42 |
+
"layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
49 |
+
"layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
52 |
+
"layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
54 |
+
"layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
61 |
+
"layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
64 |
+
"layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
66 |
+
"layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
73 |
+
"layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
76 |
+
"layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
78 |
+
"layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
85 |
+
"layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
88 |
+
"layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
90 |
+
"layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
97 |
+
"layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
100 |
+
"layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
102 |
+
"layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
109 |
+
"layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
112 |
+
"layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
114 |
+
"layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
121 |
+
"layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
124 |
+
"layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
126 |
+
"layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
133 |
+
"layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
136 |
+
"layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
138 |
+
"layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
145 |
+
"layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
148 |
+
"layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
150 |
+
"layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
157 |
+
"layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
160 |
+
"layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
162 |
+
"layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
169 |
+
"layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
172 |
+
"layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
174 |
+
"layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
176 |
+
"layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
177 |
+
"layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
180 |
+
"layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
181 |
+
"layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
184 |
+
"layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
186 |
+
"layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
188 |
+
"layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
189 |
+
"layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
190 |
+
"layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
191 |
+
"layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
192 |
+
"layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
193 |
+
"layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
194 |
+
"layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
195 |
+
"layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
196 |
+
"layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
197 |
+
"layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
198 |
+
"layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
199 |
+
"layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
200 |
+
"layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
201 |
+
"layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
202 |
+
"layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
203 |
+
"layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
204 |
+
"layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
205 |
+
"layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
206 |
+
"layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
207 |
+
"layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
208 |
+
"layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
209 |
+
"layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
210 |
+
"layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
211 |
+
"layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
212 |
+
"layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
213 |
+
"layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
214 |
+
"layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
215 |
+
"layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
216 |
+
"layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
217 |
+
"layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
218 |
+
"layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
219 |
+
"layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
220 |
+
"layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
221 |
+
"layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
222 |
+
"layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
223 |
+
"layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
224 |
+
"layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
225 |
+
"layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
226 |
+
"layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
227 |
+
"layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
228 |
+
"layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
229 |
+
"layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
230 |
+
"layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
231 |
+
"layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
232 |
+
"layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
233 |
+
"layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
234 |
+
"layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
235 |
+
"layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
236 |
+
"layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
237 |
+
"layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
238 |
+
"layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
239 |
+
"layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
240 |
+
"layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
241 |
+
"layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
242 |
+
"layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
243 |
+
"layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
244 |
+
"layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
245 |
+
"layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
246 |
+
"layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
247 |
+
"layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
248 |
+
"layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
249 |
+
"layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
250 |
+
"layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
251 |
+
"layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
252 |
+
"layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
253 |
+
"layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
254 |
+
"layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
255 |
+
"layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
256 |
+
"layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
257 |
+
"layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
258 |
+
"layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
259 |
+
"layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
261 |
+
"layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
262 |
+
"layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
263 |
+
"layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
264 |
+
"layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
265 |
+
"layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
268 |
+
"layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
270 |
+
"layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
273 |
+
"layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
274 |
+
"layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
275 |
+
"layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
276 |
+
"layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
277 |
+
"layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
278 |
+
"layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
279 |
+
"layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
280 |
+
"layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
281 |
+
"layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
282 |
+
"layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
283 |
+
"layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
284 |
+
"layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
289 |
+
"layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
292 |
+
"layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
293 |
+
"layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
294 |
+
"layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
295 |
+
"layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
297 |
+
"layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
298 |
+
"layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
299 |
+
"layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
300 |
+
"layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
301 |
+
"layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
302 |
+
"layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
303 |
+
"layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
304 |
+
"layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
305 |
+
"layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
306 |
+
"layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
307 |
+
"layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
308 |
+
"layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
309 |
+
"layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
310 |
+
"layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
311 |
+
"layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
312 |
+
"layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
313 |
+
"layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
314 |
+
"layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
315 |
+
"layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
316 |
+
"layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
317 |
+
"layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
318 |
+
"layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
319 |
+
"layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
320 |
+
"layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
321 |
+
"layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
322 |
+
"layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
323 |
+
"layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
324 |
+
"layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
325 |
+
"layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
326 |
+
"layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
327 |
+
"layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
328 |
+
"layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
329 |
+
"layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
330 |
+
"layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
331 |
+
"layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
332 |
+
"layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
333 |
+
"layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
334 |
+
"layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
335 |
+
"layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
336 |
+
"layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
337 |
+
"layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
338 |
+
"layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
339 |
+
"layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
340 |
+
"layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
341 |
+
"layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
342 |
+
"layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
343 |
+
"norm.weight": "model-00002-of-00002.safetensors"
|
344 |
+
}
|
345 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
}
|
20 |
+
}
|
test.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Wrap your own tokenizer
|
2 |
+
from transformers import PreTrainedTokenizerFast
|
3 |
+
|
4 |
+
wrapped_tokenizer = PreTrainedTokenizerFast(
|
5 |
+
tokenizer_file="tokenizer.json", # You can load from the tokenizer file
|
6 |
+
unk_token="[UNK]",
|
7 |
+
pad_token="[PAD]",
|
8 |
+
cls_token="[CLS]",
|
9 |
+
sep_token="[SEP]",
|
10 |
+
mask_token="[MASK]",
|
11 |
+
)
|
12 |
+
|
13 |
+
# Finally, save your own pretrained tokenizer
|
14 |
+
wrapped_tokenizer.save_pretrained('my-tokenizer')
|
tokenization_qwen.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from typing import List, Optional
|
3 |
+
from transformers.models.qwen2.tokenization_qwen2 import Qwen2Tokenizer as OriginalQwen2Tokenizer
|
4 |
+
from transformers.models.qwen2.tokenization_qwen2_fast import Qwen2TokenizerFast as OriginalQwen2TokenizerFast
|
5 |
+
from tokenizers import processors
|
6 |
+
|
7 |
+
VOCAB_FILES_NAMES = {
|
8 |
+
"vocab_file": "vocab.json",
|
9 |
+
"merges_file": "merges.txt",
|
10 |
+
"tokenizer_file": "tokenizer.json",
|
11 |
+
}
|
12 |
+
|
13 |
+
class Qwen2Tokenizer(OriginalQwen2Tokenizer):
|
14 |
+
"""
|
15 |
+
Construct a Qwen2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
16 |
+
|
17 |
+
Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
|
18 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
19 |
+
|
20 |
+
```python
|
21 |
+
>>> from transformers import Qwen2Tokenizer
|
22 |
+
|
23 |
+
>>> tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen-tokenizer")
|
24 |
+
>>> tokenizer("Hello world")["input_ids"]
|
25 |
+
[9707, 1879]
|
26 |
+
|
27 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
28 |
+
[21927, 1879]
|
29 |
+
```
|
30 |
+
This is expected.
|
31 |
+
|
32 |
+
You should not use GPT2Tokenizer instead, because of the different pretokenization rules.
|
33 |
+
|
34 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
35 |
+
this superclass for more information regarding those methods.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_file (`str`):
|
39 |
+
Path to the vocabulary file.
|
40 |
+
merges_file (`str`):
|
41 |
+
Path to the merges file.
|
42 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
43 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
44 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
45 |
+
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
46 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
47 |
+
token instead.
|
48 |
+
bos_token (`str`, *optional*):
|
49 |
+
The beginning of sequence token. Not applicable for this tokenizer.
|
50 |
+
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
51 |
+
The end of sequence token.
|
52 |
+
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
53 |
+
The token used for padding, for example when batching sequences of different lengths.
|
54 |
+
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
55 |
+
Whether or not the model should cleanup the spaces that were added when splitting the input text during the
|
56 |
+
tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces.
|
57 |
+
split_special_tokens (`bool`, *optional*, defaults to `False`):
|
58 |
+
Whether or not the special tokens should be split during the tokenization process. The default behavior is
|
59 |
+
to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") =
|
60 |
+
['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<',
|
61 |
+
'|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment.
|
62 |
+
add_eos_token (`bool`, *optional*, defaults to `False`):
|
63 |
+
Whether or not to add an `eos_token` at the end of sequences.
|
64 |
+
"""
|
65 |
+
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
vocab_file,
|
69 |
+
merges_file,
|
70 |
+
errors="replace",
|
71 |
+
unk_token="<|endoftext|>",
|
72 |
+
bos_token=None,
|
73 |
+
eos_token="<|endoftext|>",
|
74 |
+
pad_token="<|endoftext|>",
|
75 |
+
clean_up_tokenization_spaces=False,
|
76 |
+
split_special_tokens=False,
|
77 |
+
add_eos_token=False,
|
78 |
+
**kwargs,
|
79 |
+
):
|
80 |
+
# The add_eos_token code was inspired by the LlamaTokenizer
|
81 |
+
self.add_eos_token = add_eos_token
|
82 |
+
|
83 |
+
super().__init__(
|
84 |
+
vocab_file=vocab_file,
|
85 |
+
merges_file=merges_file,
|
86 |
+
errors=errors,
|
87 |
+
unk_token=unk_token,
|
88 |
+
bos_token=bos_token,
|
89 |
+
eos_token=eos_token,
|
90 |
+
pad_token=pad_token,
|
91 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
92 |
+
split_special_tokens=split_special_tokens,
|
93 |
+
add_eos_token=add_eos_token,
|
94 |
+
**kwargs,
|
95 |
+
)
|
96 |
+
|
97 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
98 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
99 |
+
|
100 |
+
output = token_ids_0 + eos_token_id
|
101 |
+
|
102 |
+
if token_ids_1 is not None:
|
103 |
+
output = output + token_ids_1 + eos_token_id
|
104 |
+
|
105 |
+
return output
|
106 |
+
|
107 |
+
def get_special_tokens_mask(
|
108 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
109 |
+
) -> List[int]:
|
110 |
+
"""
|
111 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
112 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
113 |
+
|
114 |
+
Args:
|
115 |
+
token_ids_0 (`List[int]`):
|
116 |
+
List of IDs.
|
117 |
+
token_ids_1 (`List[int]`, *optional*):
|
118 |
+
Optional second list of IDs for sequence pairs.
|
119 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
120 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
124 |
+
"""
|
125 |
+
if already_has_special_tokens:
|
126 |
+
return super().get_special_tokens_mask(
|
127 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
128 |
+
)
|
129 |
+
|
130 |
+
eos_token_id = [1] if self.add_eos_token else []
|
131 |
+
|
132 |
+
if token_ids_1 is None:
|
133 |
+
return ([0] * len(token_ids_0)) + eos_token_id
|
134 |
+
return (
|
135 |
+
([0] * len(token_ids_0))
|
136 |
+
+ eos_token_id
|
137 |
+
+ ([0] * len(token_ids_1))
|
138 |
+
+ eos_token_id
|
139 |
+
)
|
140 |
+
|
141 |
+
def create_token_type_ids_from_sequences(
|
142 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
143 |
+
) -> List[int]:
|
144 |
+
"""
|
145 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
146 |
+
sequence pair mask has the following format:
|
147 |
+
|
148 |
+
```
|
149 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
150 |
+
| first sequence | second sequence |
|
151 |
+
```
|
152 |
+
|
153 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
154 |
+
|
155 |
+
Args:
|
156 |
+
token_ids_0 (`List[int]`):
|
157 |
+
List of ids.
|
158 |
+
token_ids_1 (`List[int]`, *optional*):
|
159 |
+
Optional second list of IDs for sequence pairs.
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
163 |
+
"""
|
164 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
165 |
+
|
166 |
+
output = [0] * len(token_ids_0 + eos_token_id)
|
167 |
+
|
168 |
+
if token_ids_1 is not None:
|
169 |
+
output += [1] * len(token_ids_1 + eos_token_id)
|
170 |
+
|
171 |
+
return output
|
172 |
+
|
173 |
+
class Qwen2TokenizerFast(OriginalQwen2TokenizerFast):
|
174 |
+
"""
|
175 |
+
Construct a "fast" Qwen2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
|
176 |
+
Byte-Pair-Encoding.
|
177 |
+
|
178 |
+
Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
|
179 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
180 |
+
|
181 |
+
```python
|
182 |
+
>>> from transformers import Qwen2TokenizerFast
|
183 |
+
|
184 |
+
>>> tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen-tokenizer")
|
185 |
+
>>> tokenizer("Hello world")["input_ids"]
|
186 |
+
[9707, 1879]
|
187 |
+
|
188 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
189 |
+
[21927, 1879]
|
190 |
+
```
|
191 |
+
This is expected.
|
192 |
+
|
193 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
194 |
+
refer to this superclass for more information regarding those methods.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
vocab_file (`str`, *optional*):
|
198 |
+
Path to the vocabulary file.
|
199 |
+
merges_file (`str`, *optional*):
|
200 |
+
Path to the merges file.
|
201 |
+
tokenizer_file (`str`, *optional*):
|
202 |
+
Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
|
203 |
+
contains everything needed to load the tokenizer.
|
204 |
+
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
205 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
206 |
+
token instead. Not applicable to this tokenizer.
|
207 |
+
bos_token (`str`, *optional*):
|
208 |
+
The beginning of sequence token. Not applicable for this tokenizer.
|
209 |
+
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
210 |
+
The end of sequence token.
|
211 |
+
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
212 |
+
The token used for padding, for example when batching sequences of different lengths.
|
213 |
+
add_eos_token (`bool`, *optional*, defaults to `False`):
|
214 |
+
Whether or not to add an `eos_token` at the end of sequences.
|
215 |
+
"""
|
216 |
+
|
217 |
+
slow_tokenizer_class = Qwen2Tokenizer
|
218 |
+
padding_side = "left"
|
219 |
+
|
220 |
+
def __init__(
|
221 |
+
self,
|
222 |
+
vocab_file=None,
|
223 |
+
merges_file=None,
|
224 |
+
tokenizer_file=None,
|
225 |
+
unk_token="<|endoftext|>",
|
226 |
+
bos_token=None,
|
227 |
+
eos_token="<|endoftext|>",
|
228 |
+
pad_token="<|endoftext|>",
|
229 |
+
add_eos_token=False,
|
230 |
+
**kwargs,
|
231 |
+
):
|
232 |
+
super().__init__(
|
233 |
+
vocab_file=vocab_file,
|
234 |
+
merges_file=merges_file,
|
235 |
+
tokenizer_file=tokenizer_file,
|
236 |
+
unk_token=unk_token,
|
237 |
+
bos_token=bos_token,
|
238 |
+
eos_token=eos_token,
|
239 |
+
pad_token=pad_token,
|
240 |
+
**kwargs,
|
241 |
+
)
|
242 |
+
|
243 |
+
self._add_eos_token = add_eos_token
|
244 |
+
self.update_post_processor()
|
245 |
+
|
246 |
+
def update_post_processor(self):
|
247 |
+
"""
|
248 |
+
Updates the underlying post processor with the current `eos_token`.
|
249 |
+
"""
|
250 |
+
eos = self.eos_token
|
251 |
+
eos_token_id = self.eos_token_id
|
252 |
+
if eos is None and self.add_eos_token:
|
253 |
+
raise ValueError("add_eos_token = True but eos_token = None")
|
254 |
+
|
255 |
+
single = f"$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
256 |
+
pair = f"{single} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
257 |
+
|
258 |
+
special_tokens = []
|
259 |
+
if self.add_eos_token:
|
260 |
+
special_tokens.append((eos, eos_token_id))
|
261 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
262 |
+
single=single, pair=pair, special_tokens=special_tokens
|
263 |
+
)
|
264 |
+
|
265 |
+
@property
|
266 |
+
def add_eos_token(self):
|
267 |
+
return self._add_eos_token
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_eos_token": true,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [
|
31 |
+
"<|im_start|>",
|
32 |
+
"<|im_end|>"
|
33 |
+
],
|
34 |
+
"auto_map": {
|
35 |
+
"AutoTokenizer": ["tokenization_qwen.Qwen2Tokenizer", "tokenization_qwen.Qwen2TokenizerFast"]
|
36 |
+
},
|
37 |
+
"bos_token": null,
|
38 |
+
"chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
39 |
+
"clean_up_tokenization_spaces": false,
|
40 |
+
"eos_token": "<|endoftext|>",
|
41 |
+
"errors": "replace",
|
42 |
+
"model_max_length": 32768,
|
43 |
+
"pad_token": "<|endoftext|>",
|
44 |
+
"split_special_tokens": false,
|
45 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
46 |
+
"unk_token": null
|
47 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|