--- license: apache-2.0 pipeline_tag: object-detection --- # Nepal Vehicle License Plates Detection ```python # Example Code: You can test this model on colab # Install required libraries !pip install ultralytics !pip install PIL # Import necessary libraries from ultralytics import YOLO import matplotlib.pyplot as plt from PIL import Image, ImageDraw from google.colab import files import requests # Step 1: Download the model from Hugging Face model_url = "https://huggingface.co/krishnamishra8848/Nepal_Vehicle_License_Plates_Detection_Version2/resolve/main/best.pt" model_path = "best.pt" # Download the model print("Downloading the model...") response = requests.get(model_url) with open(model_path, 'wb') as f: f.write(response.content) print("Model downloaded!") # Step 2: Load the model model = YOLO(model_path) # Step 3: Upload an image print("Please upload an image to test:") uploaded = files.upload() image_path = list(uploaded.keys())[0] # Step 4: Run inference results = model(image_path) # Step 5: Open the image and draw bounding boxes img = Image.open(image_path) draw = ImageDraw.Draw(img) for box in results[0].boxes: # Extract bounding box coordinates and class information x_min, y_min, x_max, y_max = box.xyxy[0].tolist() label = int(box.cls) # Class ID confidence = float(box.conf) # Confidence score # Draw bounding box draw.rectangle([x_min, y_min, x_max, y_max], outline="red", width=3) # Add label and confidence text = f"Class {label}, {confidence:.2f}" draw.text((x_min, y_min - 10), text, fill="red") # Step 6: Display the image with bounding boxes plt.figure(figsize=(10, 10)) plt.imshow(img) plt.axis('off') plt.show()