--- base_model: - meta-llama/Llama-3.1-8B-Instruct datasets: - rojas-diego/Apple-MLX-QA language: - en library_name: transformers license: mit pipeline_tag: question-answering --- # Meta-Llama-3.1-8B-Instruct-Apple-MLX ## Overview This model is a merge of the [MLX QLORA Adapter](https://huggingface.co/koyeb/Meta-Llama-3.1-8B-Instruct-Apple-MLX-Adapter) and the base model [Meta LLaMa 3.1 8B Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) model, trained to answer questions and provide guidance on Apple's latest machine learning framework, MLX. The fine-tuning was done using the LORA (Low-Rank Adaptation) method on a custom dataset of question-answer pairs derived from the MLX documentation. ## Dataset Fine-tuned on a single epoch of [Apple MLX QA](https://huggingface.co/datasets/koyeb/Apple-MLX-QA). ## Installation To use the model, you need to install the required dependencies: ```bash pip install peft transformers jinja2==3.1.0 ``` ## Usage Here’s a sample code snippet to load and interact with the model: ```python import transformers import torch model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] outputs = pipeline( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ```