{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff76ae16930>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000006, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677209181814102418, "learning_rate": 0.0030538614898499294, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL3N2bWMvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9zdm1jLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9pBGlnNqKAhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAA1/G744leA8xtI6PySKJL/7iJ6+eUBLPwAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -5.999999999950489e-06, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVVxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6C6Js6LQZ8CUhpRSlIwBbJRL14wBdJRHQKo6t6MR6GB1fZQoaAZoCWgPQwj9v+rIEdJhQJSGlFKUaBVNjQFoFkdAqj2cajvd/XV9lChoBmgJaA9DCAdhbvdysUJAlIaUUpRoFUt5aBZHQKo+cXuVopR1fZQoaAZoCWgPQwjXM4RjFnZkwJSGlFKUaBVL42gWR0CqQQafSQYDdX2UKGgGaAloD0MIUtZvJqYccECUhpRSlGgVTawBaBZHQKpEq/ag2611fZQoaAZoCWgPQwh7aB8reGBpwJSGlFKUaBVL9GgWR0CqRk5zYEntdX2UKGgGaAloD0MIPrMkQE3IZcCUhpRSlGgVS+5oFkdAqkfl6mfoR3V9lChoBmgJaA9DCOs2qP3WPELAlIaUUpRoFU2UAWgWR0CqSr03Ov+wdX2UKGgGaAloD0MInyCx3T3JV8CUhpRSlGgVTQYCaBZHQKpOyVYZEUl1fZQoaAZoCWgPQwhMqrab4HtsQJSGlFKUaBVNvgFoFkdAqlO3fqHGj3V9lChoBmgJaA9DCIv/O6JCcG1AlIaUUpRoFU1qAWgWR0CqVlA5imVJdX2UKGgGaAloD0MIP1jGhm5GG8CUhpRSlGgVS7VoFkdAqld+L74zrXV9lChoBmgJaA9DCB1WuOWjMHBAlIaUUpRoFU06AWgWR0CqWbJGnXNDdX2UKGgGaAloD0MI4xk09M/Ra0CUhpRSlGgVS+RoFkdAqls9u5z5oHV9lChoBmgJaA9DCC18fa3LFGVAlIaUUpRoFU2EAmgWR0CqYX/HxSYPdX2UKGgGaAloD0MIeeblsPsNZkCUhpRSlGgVTXsCaBZHQKpnAbmU4aR1fZQoaAZoCWgPQwjKGYo7Xg9wwJSGlFKUaBVNLAFoFkdAqmj/1tfoinV9lChoBmgJaA9DCGsnSkIiBVTAlIaUUpRoFU2VAmgWR0CqbmYHgP3BdX2UKGgGaAloD0MIPEolPKHfY8CUhpRSlGgVTSkBaBZHQKpxI7zTWoZ1fZQoaAZoCWgPQwgNUYU/wyp1wJSGlFKUaBVLxWgWR0Cqc1hqbjLkdX2UKGgGaAloD0MIg4b+Ca4ZZ8CUhpRSlGgVS8poFkdAqnSuUt7KJXV9lChoBmgJaA9DCJ3Ul6UdQWvAlIaUUpRoFUvPaBZHQKp2D/6wdKd1fZQoaAZoCWgPQwjcvdwnR5twwJSGlFKUaBVNlAFoFkdAqnjowVTJhnV9lChoBmgJaA9DCFYt6SgHJmfAlIaUUpRoFUvjaBZHQKp6ZBSk0rN1fZQoaAZoCWgPQwh5kQn4tRNvQJSGlFKUaBVNhQFoFkdAqn0r/GVAzHV9lChoBmgJaA9DCEAVN26xMGnAlIaUUpRoFU0nAWgWR0CqfydTgl4UdX2UKGgGaAloD0MIjlw3pbw6NkCUhpRSlGgVTegDaBZHQKqI8icoYvZ1fZQoaAZoCWgPQwhqpnud1LdswJSGlFKUaBVNigFoFkdAqout1uBMBnV9lChoBmgJaA9DCN1AgXfyfVbAlIaUUpRoFU0FAWgWR0CqjWyamXPadX2UKGgGaAloD0MIzSGphRJqZ8CUhpRSlGgVTUsBaBZHQKqPrVcUuct1fZQoaAZoCWgPQwiKHvgYLEZrQJSGlFKUaBVNTwFoFkdAqpNqw2VE/nV9lChoBmgJaA9DCLEaS1ibAmDAlIaUUpRoFU0GAmgWR0Cql4OxKQJYdX2UKGgGaAloD0MIIos08Q5lZcCUhpRSlGgVS+9oFkdAqpkaioKlYXV9lChoBmgJaA9DCNffEoC/3nDAlIaUUpRoFU1BAmgWR0CqnXrThHbzdX2UKGgGaAloD0MITTCca5iPbECUhpRSlGgVTRECaBZHQKqiHxTbWVh1fZQoaAZoCWgPQwjYSBKEK41pQJSGlFKUaBVNogFoFkdAqqYCzcAR03V9lChoBmgJaA9DCOTZ5Vuf2GTAlIaUUpRoFUvZaBZHQKqnb6yjYZl1fZQoaAZoCWgPQwjRyyiW23BmwJSGlFKUaBVL62gWR0CqqQUqpcX4dX2UKGgGaAloD0MIxM4UOi9VZ8CUhpRSlGgVS9hoFkdAqqp4cNpdr3V9lChoBmgJaA9DCJaYZyWtTDbAlIaUUpRoFU1OAWgWR0CqrLeLehwmdX2UKGgGaAloD0MIMzSeCOIBWMCUhpRSlGgVS/loFkdAqq5hQN0/4nV9lChoBmgJaA9DCOElOPWBslzAlIaUUpRoFUvgaBZHQKqv3bwjMV11fZQoaAZoCWgPQwj/PA0YpHpnwJSGlFKUaBVL/WgWR0CqsY2q94/vdX2UKGgGaAloD0MIFvw2xHgtHkCUhpRSlGgVS+xoFkdAqrMho24usnV9lChoBmgJaA9DCNY4m44ADE3AlIaUUpRoFU1UAWgWR0CqthEm6XjVdX2UKGgGaAloD0MIkXwlkFJpcMCUhpRSlGgVTUABaBZHQKq5WCJ40Mx1fZQoaAZoCWgPQwjbFmU2CJRwQJSGlFKUaBVNRwFoFkdAqruRcNYr8XV9lChoBmgJaA9DCG6jAbwF5WTAlIaUUpRoFUvVaBZHQKq88CDEm6Z1fZQoaAZoCWgPQwhjKCfaVVlmwJSGlFKUaBVLv2gWR0Cqvi0edTYNdX2UKGgGaAloD0MIkzoBTYQvTsCUhpRSlGgVS6loFkdAqr9SO1fE43V9lChoBmgJaA9DCMuEX+rnbTvAlIaUUpRoFUuvaBZHQKrAeFJxvNx1fZQoaAZoCWgPQwiDwTV3dPVrQJSGlFKUaBVNcQFoFkdAqsL0mMOwxHV9lChoBmgJaA9DCK4P643aYm/AlIaUUpRoFU0yAWgWR0CqxSFD4QBgdX2UKGgGaAloD0MIvcXDew7JUsCUhpRSlGgVS6BoFkdAqsbtz4k/r3V9lChoBmgJaA9DCFMiiV5GeTrAlIaUUpRoFUvVaBZHQKrJMFLWZqp1fZQoaAZoCWgPQwgk7rH0oZ1vwJSGlFKUaBVL/GgWR0CqyuHLaEi/dX2UKGgGaAloD0MIH4XrUbg9dMCUhpRSlGgVTRsBaBZHQKrMy3/givB1fZQoaAZoCWgPQwj7zi9KECZwQJSGlFKUaBVNwAFoFkdAqs/z0163RXV9lChoBmgJaA9DCE2+2ebGgDVAlIaUUpRoFUv4aBZHQKrRmAaNuLt1fZQoaAZoCWgPQwhyN4jWimBJwJSGlFKUaBVN6ANoFkdAqtvv7Hhjv3V9lChoBmgJaA9DCEiphCe0FHHAlIaUUpRoFU0KAmgWR0Cq39ZQYUFjdX2UKGgGaAloD0MI6kFBKdq9aMCUhpRSlGgVTVIBaBZHQKriLmGucMF1fZQoaAZoCWgPQwhpq5LIPgxnwJSGlFKUaBVL+GgWR0Cq49YuTRpldX2UKGgGaAloD0MIQ/8EFyvHVcCUhpRSlGgVTSoCaBZHQKrpwJ/G2kV1fZQoaAZoCWgPQwh4KuCeZ4xtwJSGlFKUaBVNkwFoFkdAquyfZyuIRHV9lChoBmgJaA9DCAlSKXa0WG3AlIaUUpRoFU05AWgWR0Cq7rtFBppOdX2UKGgGaAloD0MIbHwm++fnRMCUhpRSlGgVTRoBaBZHQKrwoH5aePJ1fZQoaAZoCWgPQwjOjlTf+YVQwJSGlFKUaBVNAAFoFkdAqvJfqmj0tnV9lChoBmgJaA9DCDmaIyu/JVRAlIaUUpRoFUvTaBZHQKrzxXjENvx1fZQoaAZoCWgPQwikwW1t4WhpwJSGlFKUaBVNcgFoFkdAqvajPY4ACHV9lChoBmgJaA9DCJUsJ6H01TjAlIaUUpRoFUvFaBZHQKr42Orhisp1fZQoaAZoCWgPQwg2zqYjgCc8wJSGlFKUaBVNGAFoFkdAqvs3W+XZ5HV9lChoBmgJaA9DCERSCyWTYxDAlIaUUpRoFU0AAWgWR0Cq/OnKnvUjdX2UKGgGaAloD0MI6bXZWAmsaMCUhpRSlGgVS9VoFkdAqv5U2Hck+3V9lChoBmgJaA9DCIyGjEepHDTAlIaUUpRoFU1XAWgWR0CrALODSPU8dX2UKGgGaAloD0MI8DUEx2U1a8CUhpRSlGgVTUQBaBZHQKsC6PtD2J11fZQoaAZoCWgPQwiyZ89lagZHwJSGlFKUaBVL2GgWR0CrBFik43m3dX2UKGgGaAloD0MINxsrMU9xaUCUhpRSlGgVTdABaBZHQKsI1O1OTJR1fZQoaAZoCWgPQwi+huC4jANLwJSGlFKUaBVNLwFoFkdAqwt5X0XgtXV9lChoBmgJaA9DCErP9BLjM2vAlIaUUpRoFUvQaBZHQKsM2d3B55Z1fZQoaAZoCWgPQwgYXd4crm9FwJSGlFKUaBVL9GgWR0CrDn7TUiIMdX2UKGgGaAloD0MI2VvK+eKHbsCUhpRSlGgVTQQBaBZHQKsQPwCKaXt1fZQoaAZoCWgPQwg1f0xrU2dvQJSGlFKUaBVNfgFoFkdAqxMMNayKN3V9lChoBmgJaA9DCP6cgvys3XNAlIaUUpRoFUv4aBZHQKsUsCbtqpN1fZQoaAZoCWgPQwgvou2YuslSwJSGlFKUaBVLqWgWR0CrFcZuhsZYdX2UKGgGaAloD0MIGt6swXsMbECUhpRSlGgVTdMBaBZHQKsavy6MBIZ1fZQoaAZoCWgPQwgiwr8IGkhQwJSGlFKUaBVNVAFoFkdAqx0Msg+yJXV9lChoBmgJaA9DCMHFihpMQWLAlIaUUpRoFU0QAWgWR0CrHteFL39KdX2UKGgGaAloD0MIgQhx5ey/VMCUhpRSlGgVTQ4BaBZHQKsgr9Nvfj11fZQoaAZoCWgPQwgzpIriVTduwJSGlFKUaBVNNgFoFkdAqyLDbN8mbHV9lChoBmgJaA9DCAwh5/1/i2dAlIaUUpRoFU1hAWgWR0CrJUU0vXbudX2UKGgGaAloD0MIh8Woa+11IECUhpRSlGgVS7BoFkdAqyZsB4lhPXV9lChoBmgJaA9DCCycpPljvWRAlIaUUpRoFU2EAmgWR0CrK+BCtzS1dX2UKGgGaAloD0MI001iEFiFZ0CUhpRSlGgVTT8BaBZHQKsvWmxdIG11fZQoaAZoCWgPQwitTs5QnLRwwJSGlFKUaBVL4mgWR0CrMNixVyWBdX2UKGgGaAloD0MIxxAAHHv8RMCUhpRSlGgVS+hoFkdAqzJjGPxQSHV9lChoBmgJaA9DCJllTwIbAWLAlIaUUpRoFUvRaBZHQKszw17Y02t1fZQoaAZoCWgPQwhNFYxKagliwJSGlFKUaBVL6WgWR0CrNUpKaodddX2UKGgGaAloD0MIZJXSM71ib8CUhpRSlGgVTSUBaBZHQKs3QAYHgP51fZQoaAZoCWgPQwindRvU/h9jwJSGlFKUaBVL4GgWR0CrOMHcL0BfdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1428580, "n_steps": 7, "gamma": 0.9736054594654727, "gae_lambda": 0.9068044974477245, "ent_coef": 0.05472803605520063, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL3N2bWMvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9zdm1jLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-107-generic-x86_64-with-glibc2.27 # 121~18.04.1-Ubuntu SMP Thu Mar 24 17:21:33 UTC 2022", "Python": "3.8.0", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "False", "Numpy": "1.24.1", "Gym": "0.21.0"}}