Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +27 -27
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +4 -4
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -182.38 +/- 138.23
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcbe8646e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcbe8646ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcbe8646f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcbe864a040>", "_build": "<function ActorCriticPolicy._build at 0x7fcbe864a0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fcbe864a160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcbe864a1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcbe864a280>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcbe864a310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcbe864a3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcbe864a430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcbe864a4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcbe8642c60>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 100352, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677063851357816900, "learning_rate": 0.505988249401893, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/4DEOROrs7oWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAABgzoL5azAhA8Epbv4XBkD/LQJ4+PYwkPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRUdy+U9agcCUhpRSlIwBbJRLZ4wBdJRHQGgAZHVf/m11fZQoaAZoCWgPQwjCwd7E0Dp6wJSGlFKUaBVLYGgWR0BoA9rTH80ldX2UKGgGaAloD0MI/KawUuHngsCUhpRSlGgVS1BoFkdAaAaSGJvYOHV9lChoBmgJaA9DCHe9NEWgoofAlIaUUpRoFUuAaBZHQGgLJyZKFqV1fZQoaAZoCWgPQwiuK2aENyWBwJSGlFKUaBVLYGgWR0BoDl2C/XXidX2UKGgGaAloD0MIcqQzMBLfgcCUhpRSlGgVS1ZoFkdAaBEzguRLb3V9lChoBmgJaA9DCHL75ZMVS4jAlIaUUpRoFUttaBZHQGgVFGoaUA11fZQoaAZoCWgPQwj2B8ptu8GCwJSGlFKUaBVLaGgWR0BoLlweeWfLdX2UKGgGaAloD0MIP47myPoMlsCUhpRSlGgVS7ZoFkdAaDViyY5T63V9lChoBmgJaA9DCHXlszy3fKTAlIaUUpRoFU0RAWgWR0BoQwVZcLSedX2UKGgGaAloD0MIhc5r7HLAgcCUhpRSlGgVS01oFkdAaEdjhDPWx3V9lChoBmgJaA9DCK65o/9FI4LAlIaUUpRoFUtNaBZHQGhK2aUiY9h1fZQoaAZoCWgPQwgjZYukPfOBwJSGlFKUaBVLZ2gWR0BoUBIMBp6AdX2UKGgGaAloD0MIgSIWMaz8g8CUhpRSlGgVS15oFkdAaFR4etCAtnV9lChoBmgJaA9DCKWHodVpBozAlIaUUpRoFUt1aBZHQGhasEA5q/N1fZQoaAZoCWgPQwg2r+qslu2EwJSGlFKUaBVLVmgWR0Bof0mY0EX+dX2UKGgGaAloD0MID+1jBX/7d8CUhpRSlGgVS05oFkdAaIOGxlg+hXV9lChoBmgJaA9DCI3w9iAEbYXAlIaUUpRoFUtiaBZHQGiJ9iUgSvl1fZQoaAZoCWgPQwhQxvgwW1uFwJSGlFKUaBVLVGgWR0Bojd76YVqOdX2UKGgGaAloD0MIWVLuPmfKg8CUhpRSlGgVS1loFkdAaJHLGrCFbnV9lChoBmgJaA9DCAZkr3df8oHAlIaUUpRoFUtJaBZHQGiVVqnFYMh1fZQoaAZoCWgPQwjy64fYIIeBwJSGlFKUaBVLS2gWR0BomOVeKKpDdX2UKGgGaAloD0MIDybFx+fNesCUhpRSlGgVS0poFkdAaJyJXQtz0nV9lChoBmgJaA9DCPT91HhpyYXAlIaUUpRoFUuAaBZHQGijYJ/oaDR1fZQoaAZoCWgPQwiu9Nps7EKBwJSGlFKUaBVLUGgWR0Bop0adc0LudX2UKGgGaAloD0MIiPNwApO4esCUhpRSlGgVS1ZoFkdAaKuLDye7MHV9lChoBmgJaA9DCEqbqntEl4LAlIaUUpRoFUtLaBZHQGivJwjt5Ut1fZQoaAZoCWgPQwiRRC+jWBqEwJSGlFKUaBVLW2gWR0Bo1o51eSjhdX2UKGgGaAloD0MIXHLcKX2vpsCUhpRSlGgVTSQBaBZHQGjqLf+CK791fZQoaAZoCWgPQwidnndjgXiDwJSGlFKUaBVLYmgWR0Bo7w6ySmqHdX2UKGgGaAloD0MI+FROe+oSgsCUhpRSlGgVS15oFkdAaPQCq6vq1XV9lChoBmgJaA9DCH0iT5JuW4bAlIaUUpRoFUtsaBZHQGj5rmITGo91fZQoaAZoCWgPQwhc5QmE3SaFwJSGlFKUaBVLX2gWR0Bo/oZTAFgVdX2UKGgGaAloD0MIRWKCGj4thMCUhpRSlGgVS1JoFkdAaQJbBXS0B3V9lChoBmgJaA9DCIj3HFjuZ4TAlIaUUpRoFUtVaBZHQGkGYk3S8ap1fZQoaAZoCWgPQwjvyi4YPDCCwJSGlFKUaBVLVmgWR0BpCu6bvw3HdX2UKGgGaAloD0MICAQ6k7ase8CUhpRSlGgVS05oFkdAaTY+xGDtgXV9lChoBmgJaA9DCFn8prAqHqjAlIaUUpRoFU0iAWgWR0BpRxQk5ZKWdX2UKGgGaAloD0MI54pSQmClmMCUhpRSlGgVS+doFkdAaVBmz0HyE3V9lChoBmgJaA9DCOz6BbvhhXbAlIaUUpRoFUtUaBZHQGlTXmV7hNx1fZQoaAZoCWgPQwiMLQQ5aGR2wJSGlFKUaBVLUGgWR0BpVkjopx3ndX2UKGgGaAloD0MIBcWPMTche8CUhpRSlGgVS1BoFkdAaVlLsa86FXV9lChoBmgJaA9DCPKaV3X2XpTAlIaUUpRoFUuxaBZHQGlgC0fHPu51fZQoaAZoCWgPQwixM4XOi8GKwJSGlFKUaBVLfmgWR0BpeUlw97ngdX2UKGgGaAloD0MIVDiCVApgq8CUhpRSlGgVTWYBaBZHQGmLPMr3Cbd1fZQoaAZoCWgPQwiOA6+Wu8GBwJSGlFKUaBVLU2gWR0Bpjopx3mmtdX2UKGgGaAloD0MIOzWXGwyzeMCUhpRSlGgVS01oFkdAaZEiHqNZNnV9lChoBmgJaA9DCKXbErlA0ZXAlIaUUpRoFUuoaBZHQGmYFMqSX+l1fZQoaAZoCWgPQwg2zqYj4NKOwJSGlFKUaBVLkmgWR0BpnOeFtbcHdX2UKGgGaAloD0MIayi1F9F1eMCUhpRSlGgVS09oFkdAaZ+Q6IWP93V9lChoBmgJaA9DCJRoyePpqIHAlIaUUpRoFUtQaBZHQGm3ooE0SAZ1fZQoaAZoCWgPQwhp/S0BOOl9wJSGlFKUaBVLVmgWR0BpulawD/2kdX2UKGgGaAloD0MIXmkZqXdThcCUhpRSlGgVS1hoFkdAab0g8KXv6XV9lChoBmgJaA9DCDC5UWQde5PAlIaUUpRoFUupaBZHQGnDhFuvUz91fZQoaAZoCWgPQwiRtBt9jMZ4wJSGlFKUaBVLUGgWR0BpxkQoTfzjdX2UKGgGaAloD0MIp1zhXc4SgsCUhpRSlGgVS0hoFkdAacjvYODraHV9lChoBmgJaA9DCHGvzFs1O4rAlIaUUpRoFUt3aBZHQGnM4rBj4Hp1fZQoaAZoCWgPQwiU2/Y9KqOLwJSGlFKUaBVLhWgWR0Bp0XWhAWzodX2UKGgGaAloD0MIsvM2Njvqf8CUhpRSlGgVS0xoFkdAadRWd3B55nV9lChoBmgJaA9DCIi4OZWsWYfAlIaUUpRoFUt8aBZHQGnZTl1bJOp1fZQoaAZoCWgPQwia7nVSHwx6wJSGlFKUaBVLWGgWR0Bp8TcM3IdVdX2UKGgGaAloD0MIYhBYOXT6hMCUhpRSlGgVS2poFkdAafTbO/tY0XV9lChoBmgJaA9DCB5tHLE2g4LAlIaUUpRoFUtgaBZHQGn4NYr8R+V1fZQoaAZoCWgPQwi7D0BqY9eZwJSGlFKUaBVL2GgWR0BqAMSdvsJIdX2UKGgGaAloD0MIRii2gqYLfMCUhpRSlGgVS0toFkdAagOHQhOgx3V9lChoBmgJaA9DCBjqsMKNhYzAlIaUUpRoFUtxaBZHQGoHkcCHRCx1fZQoaAZoCWgPQwgxB0FHa7N8wJSGlFKUaBVLWGgWR0BqCqnR9gF5dX2UKGgGaAloD0MIX0Av3JkZhcCUhpRSlGgVS2loFkdAag4tOmBOHnV9lChoBmgJaA9DCPG6fsHuM43AlIaUUpRoFUt3aBZHQGoSLjxTbWV1fZQoaAZoCWgPQwgk7xzK0EF9wJSGlFKUaBVLTWgWR0BqKvfhuO0cdX2UKGgGaAloD0MIKnPzjQgkh8CUhpRSlGgVS2RoFkdAai5VH4Glh3V9lChoBmgJaA9DCPw07s2vDn3AlIaUUpRoFUtPaBZHQGoxMasIVud1fZQoaAZoCWgPQwhuF5rrFKOEwJSGlFKUaBVLhWgWR0BqNgRXfZVXdX2UKGgGaAloD0MIH0dzZCVpgsCUhpRSlGgVS1JoFkdAajjcAzYVZnV9lChoBmgJaA9DCIO/X8zWUIXAlIaUUpRoFUuJaBZHQGo92mHgxah1fZQoaAZoCWgPQwjGbTSAN26SwJSGlFKUaBVLlmgWR0BqQyeNDMNddX2UKGgGaAloD0MIDR07qMTOgsCUhpRSlGgVS3NoFkdAakcVKwpvxnV9lChoBmgJaA9DCIyEtpwLoI7AlIaUUpRoFUuZaBZHQGpMu2RaHKx1fZQoaAZoCWgPQwhGJXUCGjWHwJSGlFKUaBVLfmgWR0BqZwkC3gDSdX2UKGgGaAloD0MIibK3lMOCpMCUhpRSlGgVTREBaBZHQGpyc0UGmk51fZQoaAZoCWgPQwhqoWRy8um3wJSGlFKUaBVNygFoFkdAao+GwA2hqXV9lChoBmgJaA9DCKuTMxT3honAlIaUUpRoFUt4aBZHQGqVihvitJZ1fZQoaAZoCWgPQwh/hcyVwTKEwJSGlFKUaBVLaWgWR0BquLd+G47SdX2UKGgGaAloD0MIjXxe8TSIg8CUhpRSlGgVS0hoFkdAary8U21lXnV9lChoBmgJaA9DCAXB49uT36rAlIaUUpRoFU1QAWgWR0Bq0i+L3sX0dX2UKGgGaAloD0MILT4FwBiogsCUhpRSlGgVS01oFkdAatWB3A2ycHV9lChoBmgJaA9DCFVOe0rORYXAlIaUUpRoFUtXaBZHQGrZWw3YL9d1fZQoaAZoCWgPQwh/2qhOR6aAwJSGlFKUaBVLS2gWR0Bq3QLofSx8dX2UKGgGaAloD0MIEcgljhx5h8CUhpRSlGgVS3RoFkdAauIM9bHIZXV9lChoBmgJaA9DCApmTMHauX/AlIaUUpRoFUtcaBZHQGrm2jO9nK51fZQoaAZoCWgPQwgFFytqUFSBwJSGlFKUaBVLW2gWR0Bq610mtyPudX2UKGgGaAloD0MI/Knx0s18gMCUhpRSlGgVS1BoFkdAaw73PAwfyXV9lChoBmgJaA9DCIFDqFKjC5LAlIaUUpRoFUuWaBZHQGsXVi4J/od1fZQoaAZoCWgPQwjudygK1OWAwJSGlFKUaBVLbGgWR0BrHUKVpsXSdX2UKGgGaAloD0MI6SrdXefNjsCUhpRSlGgVS4loFkdAayTCTlkpZ3V9lChoBmgJaA9DCPUsCOX9TIHAlIaUUpRoFUtfaBZHQGspUoScslN1fZQoaAZoCWgPQwhu/InKRm+bwJSGlFKUaBVLx2gWR0BrNLaRISUUdX2UKGgGaAloD0MIrDyBsJNhesCUhpRSlGgVS2ZoFkdAazom4y44InV9lChoBmgJaA9DCI+pu7LLw33AlIaUUpRoFUtTaBZHQGs+EQPI4l11fZQoaAZoCWgPQwi7YHDNXfZ3wJSGlFKUaBVLUGgWR0BrQiwMYuTSdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 980, "n_steps": 1024, "gamma": 0.9317539296272632, "gae_lambda": 0.9182480658673623, "ent_coef": 0.04836019970542158, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff76ae17940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff76ae179d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff76ae17a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff76ae17af0>", "_build": "<function ActorCriticPolicy._build at 0x7ff76ae17b80>", "forward": "<function ActorCriticPolicy.forward at 0x7ff76ae17c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff76ae17ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff76ae17d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff76ae17dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff76ae17e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff76ae17ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff76ae17f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff76ae16930>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000006, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677209181814102418, "learning_rate": 0.0030538614898499294, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL3N2bWMvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9zdm1jLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9pBGlnNqKAhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAA1/G744leA8xtI6PySKJL/7iJ6+eUBLPwAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -5.999999999950489e-06, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVVxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6C6Js6LQZ8CUhpRSlIwBbJRL14wBdJRHQKo6t6MR6GB1fZQoaAZoCWgPQwj9v+rIEdJhQJSGlFKUaBVNjQFoFkdAqj2cajvd/XV9lChoBmgJaA9DCAdhbvdysUJAlIaUUpRoFUt5aBZHQKo+cXuVopR1fZQoaAZoCWgPQwjXM4RjFnZkwJSGlFKUaBVL42gWR0CqQQafSQYDdX2UKGgGaAloD0MIUtZvJqYccECUhpRSlGgVTawBaBZHQKpEq/ag2611fZQoaAZoCWgPQwh7aB8reGBpwJSGlFKUaBVL9GgWR0CqRk5zYEntdX2UKGgGaAloD0MIPrMkQE3IZcCUhpRSlGgVS+5oFkdAqkfl6mfoR3V9lChoBmgJaA9DCOs2qP3WPELAlIaUUpRoFU2UAWgWR0CqSr03Ov+wdX2UKGgGaAloD0MInyCx3T3JV8CUhpRSlGgVTQYCaBZHQKpOyVYZEUl1fZQoaAZoCWgPQwhMqrab4HtsQJSGlFKUaBVNvgFoFkdAqlO3fqHGj3V9lChoBmgJaA9DCIv/O6JCcG1AlIaUUpRoFU1qAWgWR0CqVlA5imVJdX2UKGgGaAloD0MIP1jGhm5GG8CUhpRSlGgVS7VoFkdAqld+L74zrXV9lChoBmgJaA9DCB1WuOWjMHBAlIaUUpRoFU06AWgWR0CqWbJGnXNDdX2UKGgGaAloD0MI4xk09M/Ra0CUhpRSlGgVS+RoFkdAqls9u5z5oHV9lChoBmgJaA9DCC18fa3LFGVAlIaUUpRoFU2EAmgWR0CqYX/HxSYPdX2UKGgGaAloD0MIeeblsPsNZkCUhpRSlGgVTXsCaBZHQKpnAbmU4aR1fZQoaAZoCWgPQwjKGYo7Xg9wwJSGlFKUaBVNLAFoFkdAqmj/1tfoinV9lChoBmgJaA9DCGsnSkIiBVTAlIaUUpRoFU2VAmgWR0CqbmYHgP3BdX2UKGgGaAloD0MIPEolPKHfY8CUhpRSlGgVTSkBaBZHQKpxI7zTWoZ1fZQoaAZoCWgPQwgNUYU/wyp1wJSGlFKUaBVLxWgWR0Cqc1hqbjLkdX2UKGgGaAloD0MIg4b+Ca4ZZ8CUhpRSlGgVS8poFkdAqnSuUt7KJXV9lChoBmgJaA9DCJ3Ul6UdQWvAlIaUUpRoFUvPaBZHQKp2D/6wdKd1fZQoaAZoCWgPQwjcvdwnR5twwJSGlFKUaBVNlAFoFkdAqnjowVTJhnV9lChoBmgJaA9DCFYt6SgHJmfAlIaUUpRoFUvjaBZHQKp6ZBSk0rN1fZQoaAZoCWgPQwh5kQn4tRNvQJSGlFKUaBVNhQFoFkdAqn0r/GVAzHV9lChoBmgJaA9DCEAVN26xMGnAlIaUUpRoFU0nAWgWR0CqfydTgl4UdX2UKGgGaAloD0MIjlw3pbw6NkCUhpRSlGgVTegDaBZHQKqI8icoYvZ1fZQoaAZoCWgPQwhqpnud1LdswJSGlFKUaBVNigFoFkdAqout1uBMBnV9lChoBmgJaA9DCN1AgXfyfVbAlIaUUpRoFU0FAWgWR0CqjWyamXPadX2UKGgGaAloD0MIzSGphRJqZ8CUhpRSlGgVTUsBaBZHQKqPrVcUuct1fZQoaAZoCWgPQwiKHvgYLEZrQJSGlFKUaBVNTwFoFkdAqpNqw2VE/nV9lChoBmgJaA9DCLEaS1ibAmDAlIaUUpRoFU0GAmgWR0Cql4OxKQJYdX2UKGgGaAloD0MIIos08Q5lZcCUhpRSlGgVS+9oFkdAqpkaioKlYXV9lChoBmgJaA9DCNffEoC/3nDAlIaUUpRoFU1BAmgWR0CqnXrThHbzdX2UKGgGaAloD0MITTCca5iPbECUhpRSlGgVTRECaBZHQKqiHxTbWVh1fZQoaAZoCWgPQwjYSBKEK41pQJSGlFKUaBVNogFoFkdAqqYCzcAR03V9lChoBmgJaA9DCOTZ5Vuf2GTAlIaUUpRoFUvZaBZHQKqnb6yjYZl1fZQoaAZoCWgPQwjRyyiW23BmwJSGlFKUaBVL62gWR0CqqQUqpcX4dX2UKGgGaAloD0MIxM4UOi9VZ8CUhpRSlGgVS9hoFkdAqqp4cNpdr3V9lChoBmgJaA9DCJaYZyWtTDbAlIaUUpRoFU1OAWgWR0CqrLeLehwmdX2UKGgGaAloD0MIMzSeCOIBWMCUhpRSlGgVS/loFkdAqq5hQN0/4nV9lChoBmgJaA9DCOElOPWBslzAlIaUUpRoFUvgaBZHQKqv3bwjMV11fZQoaAZoCWgPQwj/PA0YpHpnwJSGlFKUaBVL/WgWR0CqsY2q94/vdX2UKGgGaAloD0MIFvw2xHgtHkCUhpRSlGgVS+xoFkdAqrMho24usnV9lChoBmgJaA9DCNY4m44ADE3AlIaUUpRoFU1UAWgWR0CqthEm6XjVdX2UKGgGaAloD0MIkXwlkFJpcMCUhpRSlGgVTUABaBZHQKq5WCJ40Mx1fZQoaAZoCWgPQwjbFmU2CJRwQJSGlFKUaBVNRwFoFkdAqruRcNYr8XV9lChoBmgJaA9DCG6jAbwF5WTAlIaUUpRoFUvVaBZHQKq88CDEm6Z1fZQoaAZoCWgPQwhjKCfaVVlmwJSGlFKUaBVLv2gWR0Cqvi0edTYNdX2UKGgGaAloD0MIkzoBTYQvTsCUhpRSlGgVS6loFkdAqr9SO1fE43V9lChoBmgJaA9DCMuEX+rnbTvAlIaUUpRoFUuvaBZHQKrAeFJxvNx1fZQoaAZoCWgPQwiDwTV3dPVrQJSGlFKUaBVNcQFoFkdAqsL0mMOwxHV9lChoBmgJaA9DCK4P643aYm/AlIaUUpRoFU0yAWgWR0CqxSFD4QBgdX2UKGgGaAloD0MIvcXDew7JUsCUhpRSlGgVS6BoFkdAqsbtz4k/r3V9lChoBmgJaA9DCFMiiV5GeTrAlIaUUpRoFUvVaBZHQKrJMFLWZqp1fZQoaAZoCWgPQwgk7rH0oZ1vwJSGlFKUaBVL/GgWR0CqyuHLaEi/dX2UKGgGaAloD0MIH4XrUbg9dMCUhpRSlGgVTRsBaBZHQKrMy3/givB1fZQoaAZoCWgPQwj7zi9KECZwQJSGlFKUaBVNwAFoFkdAqs/z0163RXV9lChoBmgJaA9DCE2+2ebGgDVAlIaUUpRoFUv4aBZHQKrRmAaNuLt1fZQoaAZoCWgPQwhyN4jWimBJwJSGlFKUaBVN6ANoFkdAqtvv7Hhjv3V9lChoBmgJaA9DCEiphCe0FHHAlIaUUpRoFU0KAmgWR0Cq39ZQYUFjdX2UKGgGaAloD0MI6kFBKdq9aMCUhpRSlGgVTVIBaBZHQKriLmGucMF1fZQoaAZoCWgPQwhpq5LIPgxnwJSGlFKUaBVL+GgWR0Cq49YuTRpldX2UKGgGaAloD0MIQ/8EFyvHVcCUhpRSlGgVTSoCaBZHQKrpwJ/G2kV1fZQoaAZoCWgPQwh4KuCeZ4xtwJSGlFKUaBVNkwFoFkdAquyfZyuIRHV9lChoBmgJaA9DCAlSKXa0WG3AlIaUUpRoFU05AWgWR0Cq7rtFBppOdX2UKGgGaAloD0MIbHwm++fnRMCUhpRSlGgVTRoBaBZHQKrwoH5aePJ1fZQoaAZoCWgPQwjOjlTf+YVQwJSGlFKUaBVNAAFoFkdAqvJfqmj0tnV9lChoBmgJaA9DCDmaIyu/JVRAlIaUUpRoFUvTaBZHQKrzxXjENvx1fZQoaAZoCWgPQwikwW1t4WhpwJSGlFKUaBVNcgFoFkdAqvajPY4ACHV9lChoBmgJaA9DCJUsJ6H01TjAlIaUUpRoFUvFaBZHQKr42Orhisp1fZQoaAZoCWgPQwg2zqYjgCc8wJSGlFKUaBVNGAFoFkdAqvs3W+XZ5HV9lChoBmgJaA9DCERSCyWTYxDAlIaUUpRoFU0AAWgWR0Cq/OnKnvUjdX2UKGgGaAloD0MI6bXZWAmsaMCUhpRSlGgVS9VoFkdAqv5U2Hck+3V9lChoBmgJaA9DCIyGjEepHDTAlIaUUpRoFU1XAWgWR0CrALODSPU8dX2UKGgGaAloD0MI8DUEx2U1a8CUhpRSlGgVTUQBaBZHQKsC6PtD2J11fZQoaAZoCWgPQwiyZ89lagZHwJSGlFKUaBVL2GgWR0CrBFik43m3dX2UKGgGaAloD0MINxsrMU9xaUCUhpRSlGgVTdABaBZHQKsI1O1OTJR1fZQoaAZoCWgPQwi+huC4jANLwJSGlFKUaBVNLwFoFkdAqwt5X0XgtXV9lChoBmgJaA9DCErP9BLjM2vAlIaUUpRoFUvQaBZHQKsM2d3B55Z1fZQoaAZoCWgPQwgYXd4crm9FwJSGlFKUaBVL9GgWR0CrDn7TUiIMdX2UKGgGaAloD0MI2VvK+eKHbsCUhpRSlGgVTQQBaBZHQKsQPwCKaXt1fZQoaAZoCWgPQwg1f0xrU2dvQJSGlFKUaBVNfgFoFkdAqxMMNayKN3V9lChoBmgJaA9DCP6cgvys3XNAlIaUUpRoFUv4aBZHQKsUsCbtqpN1fZQoaAZoCWgPQwgvou2YuslSwJSGlFKUaBVLqWgWR0CrFcZuhsZYdX2UKGgGaAloD0MIGt6swXsMbECUhpRSlGgVTdMBaBZHQKsavy6MBIZ1fZQoaAZoCWgPQwgiwr8IGkhQwJSGlFKUaBVNVAFoFkdAqx0Msg+yJXV9lChoBmgJaA9DCMHFihpMQWLAlIaUUpRoFU0QAWgWR0CrHteFL39KdX2UKGgGaAloD0MIgQhx5ey/VMCUhpRSlGgVTQ4BaBZHQKsgr9Nvfj11fZQoaAZoCWgPQwgzpIriVTduwJSGlFKUaBVNNgFoFkdAqyLDbN8mbHV9lChoBmgJaA9DCAwh5/1/i2dAlIaUUpRoFU1hAWgWR0CrJUU0vXbudX2UKGgGaAloD0MIh8Woa+11IECUhpRSlGgVS7BoFkdAqyZsB4lhPXV9lChoBmgJaA9DCCycpPljvWRAlIaUUpRoFU2EAmgWR0CrK+BCtzS1dX2UKGgGaAloD0MI001iEFiFZ0CUhpRSlGgVTT8BaBZHQKsvWmxdIG11fZQoaAZoCWgPQwitTs5QnLRwwJSGlFKUaBVL4mgWR0CrMNixVyWBdX2UKGgGaAloD0MIxxAAHHv8RMCUhpRSlGgVS+hoFkdAqzJjGPxQSHV9lChoBmgJaA9DCJllTwIbAWLAlIaUUpRoFUvRaBZHQKszw17Y02t1fZQoaAZoCWgPQwhNFYxKagliwJSGlFKUaBVL6WgWR0CrNUpKaodddX2UKGgGaAloD0MIZJXSM71ib8CUhpRSlGgVTSUBaBZHQKs3QAYHgP51fZQoaAZoCWgPQwindRvU/h9jwJSGlFKUaBVL4GgWR0CrOMHcL0BfdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1428580, "n_steps": 7, "gamma": 0.9736054594654727, "gae_lambda": 0.9068044974477245, "ent_coef": 0.05472803605520063, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL3N2bWMvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9zdm1jLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-107-generic-x86_64-with-glibc2.27 # 121~18.04.1-Ubuntu SMP Thu Mar 24 17:21:33 UTC 2022", "Python": "3.8.0", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "False", "Numpy": "1.24.1", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b1653e41180dc9d86e7e7d8bf75ac1d6b8a554c3849fa0edf9ada3a68b0964d
|
3 |
+
size 146312
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 0,
|
23 |
"policy_kwargs": {},
|
@@ -43,21 +43,21 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 1,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
-
"learning_rate": 0.
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
-
":serialized:": "
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -67,27 +67,27 @@
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
-
"n_steps":
|
81 |
-
"gamma": 0.
|
82 |
-
"gae_lambda": 0.
|
83 |
-
"ent_coef": 0.
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
"n_epochs": 10,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
-
":serialized:": "
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff76ae17940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff76ae179d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff76ae17a60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff76ae17af0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff76ae17b80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff76ae17c10>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff76ae17ca0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff76ae17d30>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff76ae17dc0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff76ae17e50>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff76ae17ee0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff76ae17f70>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7ff76ae16930>"
|
21 |
},
|
22 |
"verbose": 0,
|
23 |
"policy_kwargs": {},
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 1,
|
46 |
+
"num_timesteps": 1000006,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1677209181814102418,
|
52 |
+
"learning_rate": 0.0030538614898499294,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL3N2bWMvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9zdm1jLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9pBGlnNqKAhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAA1/G744leA8xtI6PySKJL/7iJ6+eUBLPwAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -5.999999999950489e-06,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVVxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6C6Js6LQZ8CUhpRSlIwBbJRL14wBdJRHQKo6t6MR6GB1fZQoaAZoCWgPQwj9v+rIEdJhQJSGlFKUaBVNjQFoFkdAqj2cajvd/XV9lChoBmgJaA9DCAdhbvdysUJAlIaUUpRoFUt5aBZHQKo+cXuVopR1fZQoaAZoCWgPQwjXM4RjFnZkwJSGlFKUaBVL42gWR0CqQQafSQYDdX2UKGgGaAloD0MIUtZvJqYccECUhpRSlGgVTawBaBZHQKpEq/ag2611fZQoaAZoCWgPQwh7aB8reGBpwJSGlFKUaBVL9GgWR0CqRk5zYEntdX2UKGgGaAloD0MIPrMkQE3IZcCUhpRSlGgVS+5oFkdAqkfl6mfoR3V9lChoBmgJaA9DCOs2qP3WPELAlIaUUpRoFU2UAWgWR0CqSr03Ov+wdX2UKGgGaAloD0MInyCx3T3JV8CUhpRSlGgVTQYCaBZHQKpOyVYZEUl1fZQoaAZoCWgPQwhMqrab4HtsQJSGlFKUaBVNvgFoFkdAqlO3fqHGj3V9lChoBmgJaA9DCIv/O6JCcG1AlIaUUpRoFU1qAWgWR0CqVlA5imVJdX2UKGgGaAloD0MIP1jGhm5GG8CUhpRSlGgVS7VoFkdAqld+L74zrXV9lChoBmgJaA9DCB1WuOWjMHBAlIaUUpRoFU06AWgWR0CqWbJGnXNDdX2UKGgGaAloD0MI4xk09M/Ra0CUhpRSlGgVS+RoFkdAqls9u5z5oHV9lChoBmgJaA9DCC18fa3LFGVAlIaUUpRoFU2EAmgWR0CqYX/HxSYPdX2UKGgGaAloD0MIeeblsPsNZkCUhpRSlGgVTXsCaBZHQKpnAbmU4aR1fZQoaAZoCWgPQwjKGYo7Xg9wwJSGlFKUaBVNLAFoFkdAqmj/1tfoinV9lChoBmgJaA9DCGsnSkIiBVTAlIaUUpRoFU2VAmgWR0CqbmYHgP3BdX2UKGgGaAloD0MIPEolPKHfY8CUhpRSlGgVTSkBaBZHQKpxI7zTWoZ1fZQoaAZoCWgPQwgNUYU/wyp1wJSGlFKUaBVLxWgWR0Cqc1hqbjLkdX2UKGgGaAloD0MIg4b+Ca4ZZ8CUhpRSlGgVS8poFkdAqnSuUt7KJXV9lChoBmgJaA9DCJ3Ul6UdQWvAlIaUUpRoFUvPaBZHQKp2D/6wdKd1fZQoaAZoCWgPQwjcvdwnR5twwJSGlFKUaBVNlAFoFkdAqnjowVTJhnV9lChoBmgJaA9DCFYt6SgHJmfAlIaUUpRoFUvjaBZHQKp6ZBSk0rN1fZQoaAZoCWgPQwh5kQn4tRNvQJSGlFKUaBVNhQFoFkdAqn0r/GVAzHV9lChoBmgJaA9DCEAVN26xMGnAlIaUUpRoFU0nAWgWR0CqfydTgl4UdX2UKGgGaAloD0MIjlw3pbw6NkCUhpRSlGgVTegDaBZHQKqI8icoYvZ1fZQoaAZoCWgPQwhqpnud1LdswJSGlFKUaBVNigFoFkdAqout1uBMBnV9lChoBmgJaA9DCN1AgXfyfVbAlIaUUpRoFU0FAWgWR0CqjWyamXPadX2UKGgGaAloD0MIzSGphRJqZ8CUhpRSlGgVTUsBaBZHQKqPrVcUuct1fZQoaAZoCWgPQwiKHvgYLEZrQJSGlFKUaBVNTwFoFkdAqpNqw2VE/nV9lChoBmgJaA9DCLEaS1ibAmDAlIaUUpRoFU0GAmgWR0Cql4OxKQJYdX2UKGgGaAloD0MIIos08Q5lZcCUhpRSlGgVS+9oFkdAqpkaioKlYXV9lChoBmgJaA9DCNffEoC/3nDAlIaUUpRoFU1BAmgWR0CqnXrThHbzdX2UKGgGaAloD0MITTCca5iPbECUhpRSlGgVTRECaBZHQKqiHxTbWVh1fZQoaAZoCWgPQwjYSBKEK41pQJSGlFKUaBVNogFoFkdAqqYCzcAR03V9lChoBmgJaA9DCOTZ5Vuf2GTAlIaUUpRoFUvZaBZHQKqnb6yjYZl1fZQoaAZoCWgPQwjRyyiW23BmwJSGlFKUaBVL62gWR0CqqQUqpcX4dX2UKGgGaAloD0MIxM4UOi9VZ8CUhpRSlGgVS9hoFkdAqqp4cNpdr3V9lChoBmgJaA9DCJaYZyWtTDbAlIaUUpRoFU1OAWgWR0CqrLeLehwmdX2UKGgGaAloD0MIMzSeCOIBWMCUhpRSlGgVS/loFkdAqq5hQN0/4nV9lChoBmgJaA9DCOElOPWBslzAlIaUUpRoFUvgaBZHQKqv3bwjMV11fZQoaAZoCWgPQwj/PA0YpHpnwJSGlFKUaBVL/WgWR0CqsY2q94/vdX2UKGgGaAloD0MIFvw2xHgtHkCUhpRSlGgVS+xoFkdAqrMho24usnV9lChoBmgJaA9DCNY4m44ADE3AlIaUUpRoFU1UAWgWR0CqthEm6XjVdX2UKGgGaAloD0MIkXwlkFJpcMCUhpRSlGgVTUABaBZHQKq5WCJ40Mx1fZQoaAZoCWgPQwjbFmU2CJRwQJSGlFKUaBVNRwFoFkdAqruRcNYr8XV9lChoBmgJaA9DCG6jAbwF5WTAlIaUUpRoFUvVaBZHQKq88CDEm6Z1fZQoaAZoCWgPQwhjKCfaVVlmwJSGlFKUaBVLv2gWR0Cqvi0edTYNdX2UKGgGaAloD0MIkzoBTYQvTsCUhpRSlGgVS6loFkdAqr9SO1fE43V9lChoBmgJaA9DCMuEX+rnbTvAlIaUUpRoFUuvaBZHQKrAeFJxvNx1fZQoaAZoCWgPQwiDwTV3dPVrQJSGlFKUaBVNcQFoFkdAqsL0mMOwxHV9lChoBmgJaA9DCK4P643aYm/AlIaUUpRoFU0yAWgWR0CqxSFD4QBgdX2UKGgGaAloD0MIvcXDew7JUsCUhpRSlGgVS6BoFkdAqsbtz4k/r3V9lChoBmgJaA9DCFMiiV5GeTrAlIaUUpRoFUvVaBZHQKrJMFLWZqp1fZQoaAZoCWgPQwgk7rH0oZ1vwJSGlFKUaBVL/GgWR0CqyuHLaEi/dX2UKGgGaAloD0MIH4XrUbg9dMCUhpRSlGgVTRsBaBZHQKrMy3/givB1fZQoaAZoCWgPQwj7zi9KECZwQJSGlFKUaBVNwAFoFkdAqs/z0163RXV9lChoBmgJaA9DCE2+2ebGgDVAlIaUUpRoFUv4aBZHQKrRmAaNuLt1fZQoaAZoCWgPQwhyN4jWimBJwJSGlFKUaBVN6ANoFkdAqtvv7Hhjv3V9lChoBmgJaA9DCEiphCe0FHHAlIaUUpRoFU0KAmgWR0Cq39ZQYUFjdX2UKGgGaAloD0MI6kFBKdq9aMCUhpRSlGgVTVIBaBZHQKriLmGucMF1fZQoaAZoCWgPQwhpq5LIPgxnwJSGlFKUaBVL+GgWR0Cq49YuTRpldX2UKGgGaAloD0MIQ/8EFyvHVcCUhpRSlGgVTSoCaBZHQKrpwJ/G2kV1fZQoaAZoCWgPQwh4KuCeZ4xtwJSGlFKUaBVNkwFoFkdAquyfZyuIRHV9lChoBmgJaA9DCAlSKXa0WG3AlIaUUpRoFU05AWgWR0Cq7rtFBppOdX2UKGgGaAloD0MIbHwm++fnRMCUhpRSlGgVTRoBaBZHQKrwoH5aePJ1fZQoaAZoCWgPQwjOjlTf+YVQwJSGlFKUaBVNAAFoFkdAqvJfqmj0tnV9lChoBmgJaA9DCDmaIyu/JVRAlIaUUpRoFUvTaBZHQKrzxXjENvx1fZQoaAZoCWgPQwikwW1t4WhpwJSGlFKUaBVNcgFoFkdAqvajPY4ACHV9lChoBmgJaA9DCJUsJ6H01TjAlIaUUpRoFUvFaBZHQKr42Orhisp1fZQoaAZoCWgPQwg2zqYjgCc8wJSGlFKUaBVNGAFoFkdAqvs3W+XZ5HV9lChoBmgJaA9DCERSCyWTYxDAlIaUUpRoFU0AAWgWR0Cq/OnKnvUjdX2UKGgGaAloD0MI6bXZWAmsaMCUhpRSlGgVS9VoFkdAqv5U2Hck+3V9lChoBmgJaA9DCIyGjEepHDTAlIaUUpRoFU1XAWgWR0CrALODSPU8dX2UKGgGaAloD0MI8DUEx2U1a8CUhpRSlGgVTUQBaBZHQKsC6PtD2J11fZQoaAZoCWgPQwiyZ89lagZHwJSGlFKUaBVL2GgWR0CrBFik43m3dX2UKGgGaAloD0MINxsrMU9xaUCUhpRSlGgVTdABaBZHQKsI1O1OTJR1fZQoaAZoCWgPQwi+huC4jANLwJSGlFKUaBVNLwFoFkdAqwt5X0XgtXV9lChoBmgJaA9DCErP9BLjM2vAlIaUUpRoFUvQaBZHQKsM2d3B55Z1fZQoaAZoCWgPQwgYXd4crm9FwJSGlFKUaBVL9GgWR0CrDn7TUiIMdX2UKGgGaAloD0MI2VvK+eKHbsCUhpRSlGgVTQQBaBZHQKsQPwCKaXt1fZQoaAZoCWgPQwg1f0xrU2dvQJSGlFKUaBVNfgFoFkdAqxMMNayKN3V9lChoBmgJaA9DCP6cgvys3XNAlIaUUpRoFUv4aBZHQKsUsCbtqpN1fZQoaAZoCWgPQwgvou2YuslSwJSGlFKUaBVLqWgWR0CrFcZuhsZYdX2UKGgGaAloD0MIGt6swXsMbECUhpRSlGgVTdMBaBZHQKsavy6MBIZ1fZQoaAZoCWgPQwgiwr8IGkhQwJSGlFKUaBVNVAFoFkdAqx0Msg+yJXV9lChoBmgJaA9DCMHFihpMQWLAlIaUUpRoFU0QAWgWR0CrHteFL39KdX2UKGgGaAloD0MIgQhx5ey/VMCUhpRSlGgVTQ4BaBZHQKsgr9Nvfj11fZQoaAZoCWgPQwgzpIriVTduwJSGlFKUaBVNNgFoFkdAqyLDbN8mbHV9lChoBmgJaA9DCAwh5/1/i2dAlIaUUpRoFU1hAWgWR0CrJUU0vXbudX2UKGgGaAloD0MIh8Woa+11IECUhpRSlGgVS7BoFkdAqyZsB4lhPXV9lChoBmgJaA9DCCycpPljvWRAlIaUUpRoFU2EAmgWR0CrK+BCtzS1dX2UKGgGaAloD0MI001iEFiFZ0CUhpRSlGgVTT8BaBZHQKsvWmxdIG11fZQoaAZoCWgPQwitTs5QnLRwwJSGlFKUaBVL4mgWR0CrMNixVyWBdX2UKGgGaAloD0MIxxAAHHv8RMCUhpRSlGgVS+hoFkdAqzJjGPxQSHV9lChoBmgJaA9DCJllTwIbAWLAlIaUUpRoFUvRaBZHQKszw17Y02t1fZQoaAZoCWgPQwhNFYxKagliwJSGlFKUaBVL6WgWR0CrNUpKaodddX2UKGgGaAloD0MIZJXSM71ib8CUhpRSlGgVTSUBaBZHQKs3QAYHgP51fZQoaAZoCWgPQwindRvU/h9jwJSGlFKUaBVL4GgWR0CrOMHcL0BfdWUu"
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 1428580,
|
80 |
+
"n_steps": 7,
|
81 |
+
"gamma": 0.9736054594654727,
|
82 |
+
"gae_lambda": 0.9068044974477245,
|
83 |
+
"ent_coef": 0.05472803605520063,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
"n_epochs": 10,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL3N2bWMvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9zdm1jLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87545
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2577003a1085c902c1a411dc0bc4ec118a2d5fcafd38fa376240723c23de8891
|
3 |
size 87545
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43265
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7bf47e82413e7265e9d9be092d4f6f9be51d117a5041781472dfdafc49d5d0c4
|
3 |
size 43265
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS: Linux-5.
|
2 |
-
- Python: 3.8.
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
-
- PyTorch: 1.13.1+
|
5 |
- GPU Enabled: False
|
6 |
-
- Numpy: 1.
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.4.0-107-generic-x86_64-with-glibc2.27 # 121~18.04.1-Ubuntu SMP Thu Mar 24 17:21:33 UTC 2022
|
2 |
+
- Python: 3.8.0
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
- GPU Enabled: False
|
6 |
+
- Numpy: 1.24.1
|
7 |
- Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -182.3848796770367, "std_reward": 138.23210892749654, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-24T11:25:40.973698"}
|