kmjtspxr commited on
Commit
60c257c
·
verified ·
1 Parent(s): 011c6ae

Upload 8 files

Browse files
Files changed (8) hide show
  1. best.onnx +3 -0
  2. best_metadata.json +1 -0
  3. config.json +17 -0
  4. data.yaml +6 -0
  5. function.yaml +24 -0
  6. model_index.json +8 -0
  7. requirements.txt +5 -0
  8. yolov8l.yaml +40 -0
best.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aba8c963ab3a16b2fe42b8b66f181a1d4cadce9ea91c9b8605e06f3696ba879a
3
+ size 174692170
best_metadata.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"task": "object-detection", "model_type": "yolov8", "num_classes": 1, "class_names": ["face"]}
config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "yolov8",
3
+ "classes": ["face"],
4
+ "id2label": { "0": "face" },
5
+ "label2id": { "face": 0 },
6
+ "inference_config": {
7
+ "confidence_threshold": 0.5,
8
+ "iou_threshold": 0.45,
9
+ "input_size": [640, 640]
10
+ },
11
+ "model_details": {
12
+ "framework": "ultralytics",
13
+ "architecture": "yolov8l",
14
+ "num_classes": 1,
15
+ "input_channels": 3
16
+ }
17
+ }
data.yaml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ train: /home/park-ubuntu/mj/data/images/train
2
+ val: /home/park-ubuntu/mj/data/images/val
3
+
4
+ nc: 1
5
+ names:
6
+ - face
function.yaml ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ metadata:
2
+ name: yolov8-function
3
+ namespace: nuclio
4
+
5
+ spec:
6
+ runtime: "python:3.9"
7
+ handler: "main:handler"
8
+ description: "YOLOv8 object detection"
9
+ resources:
10
+ limits:
11
+ cpu: "500m"
12
+ memory: "512Mi"
13
+ build:
14
+ path: "./"
15
+ baseImage: "python:3.9"
16
+ commands:
17
+ - pip install -r requirements.txt
18
+ triggers:
19
+ myHttpTrigger:
20
+ class: "http"
21
+ kind: "http"
22
+ maxWorkers: 4
23
+ attributes:
24
+ port: 8080
model_index.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "object-detection",
3
+ "architecture": "yolov8",
4
+ "num_classes": 1,
5
+ "class_names": ["face"],
6
+ "input_size": [640, 640],
7
+ "confidence_threshold": 0.5
8
+ }
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ torch>=1.7.0
2
+ ultralytics
3
+ numpy
4
+ opencv-python
5
+ flask
yolov8l.yaml ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 1 # number of classes (face)
5
+ depth_multiple: 1.00
6
+ width_multiple: 1.00
7
+
8
+ # YOLOv8.0l backbone
9
+ backbone:
10
+ # [from, repeats, module, args]
11
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
12
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
13
+ - [-1, 3, C2f, [128, True]]
14
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
15
+ - [-1, 6, C2f, [256, True]]
16
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
17
+ - [-1, 6, C2f, [512, True]]
18
+ - [-1, 1, Conv, [512, 3, 2]] # 7-P5/32
19
+ - [-1, 3, C2f, [512, True]]
20
+ - [-1, 1, SPPF, [512, 5]] # 9
21
+
22
+ # YOLOv8.0l head
23
+ head:
24
+ - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
25
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
26
+ - [-1, 3, C2f, [512]] # 13
27
+
28
+ - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
29
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
30
+ - [-1, 3, C2f, [256]] # 17 (P3/8-small)
31
+
32
+ - [-1, 1, Conv, [256, 3, 2]]
33
+ - [[-1, 12], 1, Concat, [1]] # cat head P4
34
+ - [-1, 3, C2f, [512]] # 20 (P4/16-medium)
35
+
36
+ - [-1, 1, Conv, [512, 3, 2]]
37
+ - [[-1, 9], 1, Concat, [1]] # cat head P5
38
+ - [-1, 3, C2f, [512]] # 23 (P5/32-large)
39
+
40
+ - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)