Add model files
Browse files- gaugan.py +178 -0
- weights/encoder.h5 +3 -0
- weights/generator.h5 +3 -0
gaugan.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import tensorflow as tf
|
3 |
+
import tensorflow_addons as tfa
|
4 |
+
import keras
|
5 |
+
from keras import Model, Sequential, initializers
|
6 |
+
from keras.layers import Layer, Conv2D, LeakyReLU, Dropout
|
7 |
+
|
8 |
+
|
9 |
+
class SPADE(Layer):
|
10 |
+
def __init__(self, filters: int, epsilon=1e-5, **kwargs):
|
11 |
+
super().__init__(**kwargs)
|
12 |
+
self.epsilon = epsilon
|
13 |
+
self.conv = Conv2D(128, 3, padding="same", activation="relu")
|
14 |
+
self.conv_gamma = Conv2D(filters, 3, padding="same")
|
15 |
+
self.conv_beta = Conv2D(filters, 3, padding="same")
|
16 |
+
|
17 |
+
def build(self, input_shape):
|
18 |
+
self.resize_shape = input_shape[1:3]
|
19 |
+
|
20 |
+
def call(self, input_tensor, raw_mask):
|
21 |
+
mask = tf.image.resize(raw_mask, self.resize_shape, method="nearest")
|
22 |
+
x = self.conv(mask)
|
23 |
+
gamma = self.conv_gamma(x)
|
24 |
+
beta = self.conv_beta(x)
|
25 |
+
mean, var = tf.nn.moments(input_tensor, axes=(0, 1, 2), keepdims=True)
|
26 |
+
std = tf.sqrt(var + self.epsilon)
|
27 |
+
normalized = (input_tensor - mean) / std
|
28 |
+
output = gamma * normalized + beta
|
29 |
+
return output
|
30 |
+
|
31 |
+
def get_config(self):
|
32 |
+
return {
|
33 |
+
"epsilon": self.epsilon,
|
34 |
+
"conv": self.conv,
|
35 |
+
"conv_gamma": self.conv_gamma,
|
36 |
+
"conv_beta": self.conv_beta
|
37 |
+
}
|
38 |
+
|
39 |
+
|
40 |
+
class ResBlock(Layer):
|
41 |
+
def __init__(self, filters: int, **kwargs):
|
42 |
+
super().__init__(**kwargs)
|
43 |
+
self.filters = filters
|
44 |
+
|
45 |
+
def build(self, input_shape):
|
46 |
+
input_filter = input_shape[-1]
|
47 |
+
self.spade_1 = SPADE(input_filter)
|
48 |
+
self.spade_2 = SPADE(self.filters)
|
49 |
+
self.conv_1 = Conv2D(self.filters, 3, padding="same")
|
50 |
+
self.conv_2 = Conv2D(self.filters, 3, padding="same")
|
51 |
+
self.leaky_relu = LeakyReLU(0.2)
|
52 |
+
self.learned_skip = False
|
53 |
+
|
54 |
+
if self.filters != input_filter:
|
55 |
+
self.learned_skip = True
|
56 |
+
self.spade_3 = SPADE(input_filter)
|
57 |
+
self.conv_3 = Conv2D(self.filters, 3, padding="same")
|
58 |
+
|
59 |
+
def call(self, input_tensor, mask):
|
60 |
+
x = self.spade_1(input_tensor, mask)
|
61 |
+
x = self.conv_1(self.leaky_relu(x))
|
62 |
+
x = self.spade_2(x, mask)
|
63 |
+
x = self.conv_2(self.leaky_relu(x))
|
64 |
+
skip = (
|
65 |
+
self.conv_3(self.leaky_relu(self.spade_3(input_tensor, mask)))
|
66 |
+
if self.learned_skip
|
67 |
+
else input_tensor
|
68 |
+
)
|
69 |
+
output = skip + x
|
70 |
+
return output
|
71 |
+
|
72 |
+
def get_config(self):
|
73 |
+
return {"filters": self.filters}
|
74 |
+
|
75 |
+
|
76 |
+
class Downsample(Layer):
|
77 |
+
def __init__(self,
|
78 |
+
channels: int,
|
79 |
+
kernels: int,
|
80 |
+
strides: int = 2,
|
81 |
+
apply_norm=True,
|
82 |
+
apply_activation=True,
|
83 |
+
apply_dropout=False,
|
84 |
+
**kwargs
|
85 |
+
):
|
86 |
+
super().__init__(**kwargs)
|
87 |
+
self.channels = channels
|
88 |
+
self.kernels = kernels
|
89 |
+
self.strides = strides
|
90 |
+
self.apply_norm = apply_norm
|
91 |
+
self.apply_activation = apply_activation
|
92 |
+
self.apply_dropout = apply_dropout
|
93 |
+
|
94 |
+
def build(self, input_shape):
|
95 |
+
self.block = Sequential([
|
96 |
+
Conv2D(
|
97 |
+
self.channels,
|
98 |
+
self.kernels,
|
99 |
+
strides=self.strides,
|
100 |
+
padding="same",
|
101 |
+
use_bias=False,
|
102 |
+
kernel_initializer=initializers.GlorotNormal(),
|
103 |
+
)])
|
104 |
+
if self.apply_norm:
|
105 |
+
self.block.add(tfa.layers.InstanceNormalization())
|
106 |
+
if self.apply_activation:
|
107 |
+
self.block.add(LeakyReLU(0.2))
|
108 |
+
if self.apply_dropout:
|
109 |
+
self.block.add(Dropout(0.5))
|
110 |
+
|
111 |
+
def call(self, inputs):
|
112 |
+
return self.block(inputs)
|
113 |
+
|
114 |
+
def get_config(self):
|
115 |
+
return {
|
116 |
+
"channels": self.channels,
|
117 |
+
"kernels": self.kernels,
|
118 |
+
"strides": self.strides,
|
119 |
+
"apply_norm": self.apply_norm,
|
120 |
+
"apply_activation": self.apply_activation,
|
121 |
+
"apply_dropout": self.apply_dropout,
|
122 |
+
}
|
123 |
+
|
124 |
+
|
125 |
+
class GaussianSampler(Layer):
|
126 |
+
def __init__(self, latent_dim: int, **kwargs):
|
127 |
+
super().__init__(**kwargs)
|
128 |
+
self.latent_dim = latent_dim
|
129 |
+
|
130 |
+
def call(self, inputs):
|
131 |
+
means, variance = inputs
|
132 |
+
epsilon = tf.random.normal(
|
133 |
+
shape=(tf.shape(means)[0], self.latent_dim), mean=0.0, stddev=1.0
|
134 |
+
)
|
135 |
+
samples = means + tf.exp(0.5 * variance) * epsilon
|
136 |
+
return samples
|
137 |
+
|
138 |
+
def get_config(self):
|
139 |
+
return {"latent_dim": self.latent_dim}
|
140 |
+
|
141 |
+
|
142 |
+
class GauganPredictor():
|
143 |
+
|
144 |
+
CLASSES = (
|
145 |
+
'unknown','wall', 'sky', 'tree', 'road', 'grass', 'earth',
|
146 |
+
'mountain', 'plant', 'water', 'sea', 'field', 'fence', 'rock',
|
147 |
+
'sand', 'path', 'river', 'flower', 'hill', 'palm', 'tower',
|
148 |
+
'dirt', 'land', 'waterfall', 'lake'
|
149 |
+
)
|
150 |
+
|
151 |
+
def __init__(self, model_g_path: str, model_e_path: str = None) -> None:
|
152 |
+
custom_objects = {
|
153 |
+
'ResBlock': ResBlock,
|
154 |
+
'Downsample': Downsample,
|
155 |
+
}
|
156 |
+
if model_e_path is not None:
|
157 |
+
self.encoder: Model = keras.models.load_model(model_e_path, custom_objects=custom_objects)
|
158 |
+
self.sampler = GaussianSampler(256)
|
159 |
+
self.gen: Model = keras.models.load_model(
|
160 |
+
model_g_path, custom_objects=custom_objects)
|
161 |
+
|
162 |
+
def __call__(self, im: np.ndarray, z=None) -> np.ndarray:
|
163 |
+
if len(im.shape) == 3:
|
164 |
+
im = im[np.newaxis]
|
165 |
+
if z is None:
|
166 |
+
z = tf.random.normal((im.shape[0], 256))
|
167 |
+
tmp = self.gen.predict_on_batch([z, im])
|
168 |
+
x = np.array((tmp + 1) * 127.5, np.uint8)
|
169 |
+
return x
|
170 |
+
|
171 |
+
def predict_reference(self, im: np.ndarray, reference_im: np.ndarray) -> np.ndarray:
|
172 |
+
if len(im.shape) == 3:
|
173 |
+
im = im[np.newaxis]
|
174 |
+
reference_im = reference_im[np.newaxis]
|
175 |
+
mean, variance = self.encoder(reference_im)
|
176 |
+
z = self.sampler([mean, variance])
|
177 |
+
x = np.array((self.gen.predict_on_batch([z, im]) + 1) * 127.5, np.uint8)
|
178 |
+
return x
|
weights/encoder.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:163e382f0102f1c1356a178b41c1c2234b7cdf13a340116ec2eabda53a535078
|
3 |
+
size 82794536
|
weights/generator.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c89cec334ff70b6e49b25ddda6e10b2e0bb06d1d6c7cb7b134d6bf682f559607
|
3 |
+
size 342490352
|