--- tags: - generated_from_trainer - crypto - sentiment - analysis model-index: - name: CryptoBERT results: [] language: - en pipeline_tag: text-classification --- # CryptoBERT This model is a fine-tuned version of [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) on the Custom Crypto Market Sentiment dataset. It achieves the following results on the evaluation set: - Loss: 0.3823 ```python from transformers import BertTokenizer, BertForSequenceClassification from transformers import pipeline tokenizer = BertTokenizer.from_pretrained("kk08/CryptoBERT") model = BertForSequenceClassification.from_pretrained("kk08/CryptoBERT") classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) text = "Bitcoin (BTC) touches $29k, Ethereum (ETH) Set To Explode, RenQ Finance (RENQ) Crosses Massive Milestone" result = classifier(text) print(result) ``` [{'label': 'LABEL_1', 'score': 0.9678454399108887}] ``` ``` ## Model description This model fine-tunes the [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert), which is a pre-trained NLP model to analyze the sentiment of the financial text. CryptoBERT model fine-tunes this by training the model as a downstream task on Custom Crypto Sentiment data to predict whether the given text related to the Crypto market is Positive (LABEL_1) or Negative (LABEL_1). ## Intended uses & limitations The model can perform well on Crypto-related data. The main limitation is that the fine-tuning was done using only a small corpus of data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4077 | 1.0 | 27 | 0.4257 | | 0.2048 | 2.0 | 54 | 0.2479 | | 0.0725 | 3.0 | 81 | 0.3068 | | 0.0028 | 4.0 | 108 | 0.4120 | | 0.0014 | 5.0 | 135 | 0.3566 | | 0.0007 | 6.0 | 162 | 0.3495 | | 0.0006 | 7.0 | 189 | 0.3645 | | 0.0005 | 8.0 | 216 | 0.3754 | | 0.0004 | 9.0 | 243 | 0.3804 | | 0.0004 | 10.0 | 270 | 0.3823 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3