--- license: apache-2.0 tags: - generated_from_trainer datasets: - toydata metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: toydata type: toydata args: SDN metrics: - name: Precision type: precision value: 0.8373323601861145 - name: Recall type: recall value: 0.8721847381925306 - name: F1 type: f1 value: 0.8544032768571961 - name: Accuracy type: accuracy value: 0.9640425437230208 --- # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the toydata dataset. It achieves the following results on the evaluation set: - Loss: 0.1233 - Precision: 0.8373 - Recall: 0.8722 - F1: 0.8544 - Accuracy: 0.9640 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 408 | 0.1435 | 0.7577 | 0.8557 | 0.8038 | 0.9526 | | 0.1984 | 2.0 | 816 | 0.1246 | 0.8192 | 0.8747 | 0.8460 | 0.9620 | | 0.0996 | 3.0 | 1224 | 0.1233 | 0.8373 | 0.8722 | 0.8544 | 0.9640 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1