# coding=utf-8 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ HAT configuration""" from collections import OrderedDict from typing import Mapping from transformers.onnx import OnnxConfig from transformers.utils import logging from transformers import PretrainedConfig logger = logging.get_logger(__name__) HAT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "kiddothe2b/hierarchical-transformer-base-4096": "https://huggingface.co/kiddothe2b/hierarchical-transformer-base-4096/resolve/main/config.json", "kiddothe2b/adhoc-hierarchical-transformer-base-4096": "https://huggingface.co/kiddothe2b/adhoc-hierarchical-transformer-base-4096/resolve/main/config.json", } class HATConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a :class:`~transformers.HAT`. It is used to instantiate a HAT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the HAT `kiddothe2b/hierarchical-transformer-base-4096 `__ architecture. Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. Args: vocab_size (:obj:`int`, `optional`, defaults to 30522): Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the :obj:`inputs_ids` passed when calling :class:`~transformers.BertModel` or :class:`~transformers.TFBertModel`. max_sentences (:obj:`int`, `optional`, defaults to 64): The maximum number of sentences that this model might ever be used with. max_sentence_size (:obj:`int`, `optional`, defaults to 128): The maximum sentence length that this model might ever be used with. model_max_length (:obj:`int`, `optional`, defaults to 8192): The maximum sequence length (max_sentences * max_sentence_size) that this model might ever be used with encoder_layout (:obj:`Dict`): The sentence/document encoder layout. hidden_size (:obj:`int`, `optional`, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (:obj:`int`, `optional`, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (:obj:`int`, `optional`, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (:obj:`int`, `optional`, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, :obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported. hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (:obj:`int`, `optional`, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (:obj:`int`, `optional`, defaults to 2): The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.BertModel` or :class:`~transformers.TFBertModel`. initializer_range (:obj:`float`, `optional`, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"absolute"`): Type of position embedding. Choose one of :obj:`"absolute"`, :obj:`"relative_key"`, :obj:`"relative_key_query"`. For positional embeddings use :obj:`"absolute"`. For more information on :obj:`"relative_key"`, please refer to `Self-Attention with Relative Position Representations (Shaw et al.) `__. For more information on :obj:`"relative_key_query"`, please refer to `Method 4` in `Improve Transformer Models with Better Relative Position Embeddings (Huang et al.) `__. use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if ``config.is_decoder=True``. classifier_dropout (:obj:`float`, `optional`): The dropout ratio for the classification head. """ model_type = "hierarchical-transformer" def __init__( self, vocab_size=30522, hidden_size=768, max_sentences=64, max_sentence_size=128, model_max_length=8192, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", encoder_layout=None, use_cache=True, classifier_dropout=None, **kwargs ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.max_sentences = max_sentences self.max_sentence_size = max_sentence_size self.model_max_length = model_max_length self.encoder_layout = encoder_layout self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.classifier_dropout = classifier_dropout class HATOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] )