--- license: cc-by-sa-4.0 pipeline_tag: fill-mask language: en arxiv: 2210.05529 tags: - long-documents datasets: - c4 model-index: - name: kiddothe2b/adhoc-hierarchical-transformer-base-4096 results: [] --- # Hierarchical Attention Transformer (HAT) / kiddothe2b/adhoc-hierarchical-transformer-base-4096 ## Model description This is a Hierarchical Attention Transformer (HAT) model as presented in [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification (Chalkidis et al., 2022)](https://arxiv.org/abs/2210.05529). The model has been warm-started re-using the weights of RoBERTa (Liu et al., 2019), BUT has not been continued pre-trained. It supports sequences of length up to 4,096. HAT uses hierarchical attention, which is a combination of segment-wise and cross-segment attention operations. You can think of segments as paragraphs or sentences. Note: If you wish to use a fully pre-trained HAT model, you have to use [kiddothe2b/adhoc-hat-base-4096](https://huggingface.co/kiddothe2b/adhoc-hat-base-4096). ## Intended uses & limitations The model is intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=hierarchical-transformer) to look for other versions of HAT, or fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole document to make decisions, such as document classification, sequential sentence classification, or question answering. ## How to use You can fine-tune it for SequenceClassification, SequentialSentenceClassification, and MultipleChoice down-stream tasks: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/adhoc-hierarchical-transformer-base-4096", trust_remote_code=True) doc_classifier = AutoModelForSequenceClassification("kiddothe2b/adhoc-hierarchical-transformer-base-4096", trust_remote_code=True) ``` Note: If you wish to use a fully pre-trained HAT model, you have to use [kiddothe2b/hierarchical-transformer-base-4096](https://huggingface.co/kiddothe2b/hierarchical-transformer-base-4096). ## Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. ## Training procedure ### Training and evaluation data The model has been warm-started from [roberta-base](https://huggingface.co/roberta-base) checkpoint. ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6 ## Citing If you use HAT in your research, please cite: [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification](https://arxiv.org/abs/2210.05529). Ilias Chalkidis, Xiang Dai, Manos Fergadiotis, Prodromos Malakasiotis, and Desmond Elliott. 2022. arXiv:2210.05529 (Preprint). ``` @misc{chalkidis-etal-2022-hat, url = {https://arxiv.org/abs/2210.05529}, author = {Chalkidis, Ilias and Dai, Xiang and Fergadiotis, Manos and Malakasiotis, Prodromos and Elliott, Desmond}, title = {An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification}, publisher = {arXiv}, year = {2022}, } ```