File size: 6,285 Bytes
2f5a6cb
 
80f93db
 
 
 
 
1fadc70
2f5a6cb
e9d6319
eddafe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71486a4
eddafe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddbb883
eddafe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3785216
eddafe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3785216
eddafe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9d6319
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
library_name: keras-hub
license: mit
language:
- en
tags:
- text-generation
pipeline_tag: text-generation
---
### Model Overview
GPT-2 is a language model published by OpenAI. Models are fine tuned on WebText, and range in size from 125 million to 1.5 billion parameters. See the model card below for benchmarks, data sources, and intended use cases.

Weights are released under the [MIT License](https://opensource.org/license/mit). Keras model code is released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE).

## Links

* [GPT-2 Quickstart Notebook](https://www.kaggle.com/code/gabrielrasskin/gpt-2-quickstart)
* [GPT-2 API Documentation](https://keras.io/api/keras_hub/models/gpt2/)
* [GPT-2 Model Card](https://github.com/openai/gpt-2/blob/master/model_card.md)
* [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/)
* [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/)

## Installation

Keras and KerasHub can be installed with:

```
pip install -U -q keras-hub
pip install -U -q keras>=3
```

Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instruction on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.

## Presets

The following model checkpoints are provided by the Keras team. Full code examples for each are available below.

| Preset name                | Parameters | Description                                                                                          |
|----------------------------|------------|------------------------------------------------------------------------------------------------------|
| `gpt2_base_en`               | 124.44M    | 12-layer GPT-2 model where case is maintained. Trained on WebText.                                   |
| `gpt2_medium_en`             | 354.82M    | 24-layer GPT-2 model where case is maintained. Trained on WebText.                                   |
| `gpt2_large_en`              | 774.03M    | 36-layer GPT-2 model where case is maintained. Trained on WebText.                                   |
| `gpt2_extra_large_en`        | 1.56B      | 48-layer GPT-2 model where case is maintained. Trained on WebText.                                   |
| `gpt2_base_en_cnn_dailymail` | 124.44M    | 12-layer GPT-2 model where case is maintained. Finetuned on the CNN/DailyMail summarization dataset. |

## Prompts

GPT-2 models are fine tuned on WebText. Prompting should follow text completion formatting. See the following for an example:

```python
prompt = "Keras is a "
```

would have GPT-2 aim to complete the sentence.

## Example Usage
```python
import keras
import keras_hub
import numpy as np
```

Use `generate()` to do text generation.
```python
gpt2_lm = keras_hub.models.GPT2CausalLM.from_preset("gpt2_medium_en")
gpt2_lm.generate("I want to say", max_length=30)

# Generate with batched prompts.
gpt2_lm.generate(["This is a", "Where are you"], max_length=30)
```

Compile the `generate()` function with a custom sampler.
```python
gpt2_lm = keras_hub.models.GPT2CausalLM.from_preset("gpt2_medium_en")
gpt2_lm.compile(sampler="greedy")
gpt2_lm.generate("I want to say", max_length=30)

gpt2_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
gpt2_lm.generate("I want to say", max_length=30)
```

Use `generate()` without preprocessing.
```python
# Prompt the model with `5338, 318` (the token ids for `"Who is"`).
# Use `"padding_mask"` to indicate values that should not be overridden.
prompt = {
    "token_ids": np.array([[5338, 318, 0, 0, 0]] * 2),
    "padding_mask": np.array([[1, 1, 0, 0, 0]] * 2),
}

gpt2_lm = keras_hub.models.GPT2CausalLM.from_preset(
    "gpt2_medium_en",
    preprocessor=None,
)
gpt2_lm.generate(prompt)
```

Call `fit()` on a single batch.
```python
features = ["The quick brown fox jumped.", "I forgot my homework."]
gpt2_lm = keras_hub.models.GPT2CausalLM.from_preset("gpt2_medium_en")
gpt2_lm.fit(x=features, batch_size=2)
```

Call `fit()` without preprocessing.
```python
x = {
    "token_ids": np.array([[50256, 1, 2, 3, 4]] * 2),
    "padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
}
y = np.array([[1, 2, 3, 4, 50256]] * 2)
sw = np.array([[1, 1, 1, 1, 1]] * 2)

gpt2_lm = keras_hub.models.GPT2CausalLM.from_preset(
    "gpt2_medium_en",
    preprocessor=None,
)
gpt2_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
```

## Example Usage with Hugging Face URI

```python
import keras
import keras_hub
import numpy as np
```

Use `generate()` to do text generation.
```python
gpt2_lm = keras_hub.models.GPT2CausalLM.from_preset("hf://keras/gpt2_medium_en")
gpt2_lm.generate("I want to say", max_length=30)

# Generate with batched prompts.
gpt2_lm.generate(["This is a", "Where are you"], max_length=30)
```

Compile the `generate()` function with a custom sampler.
```python
gpt2_lm = keras_hub.models.GPT2CausalLM.from_preset("hf://keras/gpt2_medium_en")
gpt2_lm.compile(sampler="greedy")
gpt2_lm.generate("I want to say", max_length=30)

gpt2_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
gpt2_lm.generate("I want to say", max_length=30)
```

Use `generate()` without preprocessing.
```python
# Prompt the model with `5338, 318` (the token ids for `"Who is"`).
# Use `"padding_mask"` to indicate values that should not be overridden.
prompt = {
    "token_ids": np.array([[5338, 318, 0, 0, 0]] * 2),
    "padding_mask": np.array([[1, 1, 0, 0, 0]] * 2),
}

gpt2_lm = keras_hub.models.GPT2CausalLM.from_preset(
    "hf://keras/gpt2_medium_en",
    preprocessor=None,
)
gpt2_lm.generate(prompt)
```

Call `fit()` on a single batch.
```python
features = ["The quick brown fox jumped.", "I forgot my homework."]
gpt2_lm = keras_hub.models.GPT2CausalLM.from_preset("hf://keras/gpt2_medium_en")
gpt2_lm.fit(x=features, batch_size=2)
```

Call `fit()` without preprocessing.
```python
x = {
    "token_ids": np.array([[50256, 1, 2, 3, 4]] * 2),
    "padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
}
y = np.array([[1, 2, 3, 4, 50256]] * 2)
sw = np.array([[1, 1, 1, 1, 1]] * 2)

gpt2_lm = keras_hub.models.GPT2CausalLM.from_preset(
    "hf://keras/gpt2_medium_en",
    preprocessor=None,
)
gpt2_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
```