laxmareddyp commited on
Commit
20aea94
·
verified ·
1 Parent(s): 8e227d7

Update Example use in README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -0
README.md CHANGED
@@ -33,6 +33,30 @@ The following model checkpoints are provided by the Keras team. Full code exampl
33
  |------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
34
  | deeplab_v3_plus_resnet50_pascalvoc | 39.1M | DeeplabV3Plus with a ResNet50 v2 backbone. Trained on PascalVOC 2012 Semantic segmentation task, which consists of 20 classes and one background class. This model achieves a final categorical accuracy of 89.34% and mIoU of 0.6391 on evaluation dataset. This preset is only comptabile with Keras 3. |
35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  ## Model paper
37
 
38
  https://arxiv.org/abs/1802.02611
 
33
  |------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
34
  | deeplab_v3_plus_resnet50_pascalvoc | 39.1M | DeeplabV3Plus with a ResNet50 v2 backbone. Trained on PascalVOC 2012 Semantic segmentation task, which consists of 20 classes and one background class. This model achieves a final categorical accuracy of 89.34% and mIoU of 0.6391 on evaluation dataset. This preset is only comptabile with Keras 3. |
35
 
36
+
37
+ ## Example Use
38
+
39
+ Load DeepLabv3+ presets a extension of DeepLabv3 by adding a simple yet effective decoder module to refine the segmentation results especially along object boundaries.
40
+
41
+ ```
42
+ images = np.ones(shape=(1, 96, 96, 3))
43
+ labels = np.zeros(shape=(1, 96, 96, 2))
44
+ segmenter = keras_hub.models.DeepLabV3ImageSegmenter.from_preset(
45
+ "hf://keras/deeplab_v3_plus_resnet50_pascalvoc",
46
+ )
47
+ segmenter.predict(images)
48
+ ```
49
+ Specify `num_classes` to load randomly initialized segmentation head.
50
+
51
+ ```
52
+ segmenter = keras_hub.models.DeepLabV3ImageSegmenter.from_preset(
53
+ "hf://keras/deeplab_v3_plus_resnet50_pascalvoc",
54
+ num_classes=2,
55
+ )
56
+ segmenter.preprocessor.image_size = (96, 96)
57
+ segmenter.fit(images, labels, epochs=3)
58
+ segmenter.predict(images) # Trained 2 class segmentation.
59
+ ```
60
  ## Model paper
61
 
62
  https://arxiv.org/abs/1802.02611