--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards license: apache-2.0 language: - zh widget: - text: >- A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: 你好,請問你可以幫我寫一封推薦信嗎? ASSISTANT: library_name: transformers pipeline_tag: text-generation extra_gated_heading: Acknowledge license to accept the repository. extra_gated_prompt: Please contact the author for access. extra_gated_button_content: Acknowledge license 同意以上內容 extra_gated_fields: Name: text Mail: text Organization: text Country: text Any utilization of the Taiwan LLM repository mandates the explicit acknowledgment and attribution to the original author: checkbox 使用Taiwan LLM必須明確地承認和歸功於優必達株式會社 Ubitus 以及原始作者: checkbox --- ## Taiwan-LLM-13B-v2.0-chat with ExLlamaV2 Quantization Original model 原始模型: https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-chat This is a quantizated model from [yentinglin/Taiwan-LLM-13B-v2.0-chat](https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-chat) in exl2 format. You are currently at the [main](https://huggingface.co/kennylam/Taiwan-LLM-13B-v2.0-chat-exl2/tree/main) branch, which provides only [measurement.json](measurement.json) used in the ExLlamaV2 quantization. Please take a look of your choices in following table of branches. 這裡是main branch, 只提供EvLlamaV2量化時所用到的[measurement.json](measurement.json)檔案。 [8.0bpw-h8](/kennylam/Taiwan-LLM-13B-v2.0-chat-exl2/tree/8.0bpw-h8) 8 bits per weight. [6.0bpw-h6](/kennylam/Taiwan-LLM-13B-v2.0-chat-exl2/tree/6.0bpw-h6) 6 bits per weight. [4.0bpw-h6](/kennylam/Taiwan-LLM-13B-v2.0-chat-exl2/tree/4.0bpw-h6) 4 bits per weight. [3.0bpw-h6](/kennylam/Taiwan-LLM-13B-v2.0-chat-exl2/tree/3.0bpw-h6) 3 bits per weight. [2.0bpw-h6](/kennylam/Taiwan-LLM-13B-v2.0-chat-exl2/tree/2.0bpw-h6) 2 bits per weight. ## Citation If you find Taiwan LLM is useful in your work, please cite it with: ``` @misc{lin2023taiwan, title={Taiwan LLM: Bridging the Linguistic Divide with a Culturally Aligned Language Model}, author={Yen-Ting Lin and Yun-Nung Chen}, year={2023}, eprint={2311.17487}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` # Acknowledgement Taiwan LLM v2 is conducted in collaboration with [Ubitus K.K.](http://ubitus.net). Ubitus provides valuable compute resources for the project.