--- library_name: transformers tags: - generated_from_trainer datasets: - kanishka/babylm2-rewritten-clean-spacy metrics: - accuracy model-index: - name: opt-babylm2-rewritten-clean-spacy-32k-earlystop-40epochs_seed-42_1e-3 results: - task: name: Causal Language Modeling type: text-generation dataset: name: kanishka/babylm2-rewritten-clean-spacy type: kanishka/babylm2-rewritten-clean-spacy metrics: - name: Accuracy type: accuracy value: 0.42334742212654364 --- # opt-babylm2-rewritten-clean-spacy-32k-earlystop-40epochs_seed-42_1e-3 This model was trained from scratch on the kanishka/babylm2-rewritten-clean-spacy dataset. It achieves the following results on the evaluation set: - Loss: 2.9600 - Accuracy: 0.4233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 32000 - num_epochs: 40.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:--------:| | 5.9216 | 0.9996 | 1931 | 4.0134 | 0.3253 | | 3.7977 | 1.9997 | 3863 | 3.5448 | 0.3639 | | 3.3887 | 2.9999 | 5795 | 3.3242 | 0.3841 | | 3.1805 | 4.0 | 7727 | 3.2082 | 0.3949 | | 3.0632 | 4.9996 | 9658 | 3.1432 | 0.4012 | | 2.9865 | 5.9997 | 11590 | 3.1010 | 0.4056 | | 2.9347 | 6.9999 | 13522 | 3.0715 | 0.4087 | | 2.8953 | 8.0 | 15454 | 3.0539 | 0.4108 | | 2.8689 | 8.9996 | 17385 | 3.0392 | 0.4122 | | 2.8456 | 9.9997 | 19317 | 3.0310 | 0.4134 | | 2.8298 | 10.9999 | 21249 | 3.0251 | 0.4144 | | 2.817 | 12.0 | 23181 | 3.0175 | 0.4152 | | 2.8069 | 12.9996 | 25112 | 3.0119 | 0.4158 | | 2.7996 | 13.9997 | 27044 | 3.0060 | 0.4163 | | 2.7615 | 14.9999 | 28976 | 3.0038 | 0.4171 | | 2.7575 | 16.0 | 30908 | 3.0022 | 0.4169 | | 2.7573 | 16.9996 | 32839 | 2.9962 | 0.4179 | | 2.7451 | 17.9997 | 34771 | 2.9867 | 0.4189 | | 2.7275 | 18.9999 | 36703 | 2.9804 | 0.4201 | | 2.7099 | 20.0 | 38635 | 2.9760 | 0.4208 | | 2.693 | 20.9996 | 40566 | 2.9683 | 0.4216 | | 2.6785 | 21.9997 | 42498 | 2.9666 | 0.4221 | | 2.6628 | 22.9999 | 44430 | 2.9646 | 0.4227 | | 2.6501 | 24.0 | 46362 | 2.9626 | 0.4228 | | 2.6343 | 24.9996 | 48293 | 2.9600 | 0.4233 | | 2.6198 | 25.9997 | 50225 | 2.9638 | 0.4236 | | 2.604 | 26.9999 | 52157 | 2.9604 | 0.4240 | | 2.5876 | 28.0 | 54089 | 2.9601 | 0.4245 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0