File size: 2,933 Bytes
9b95c22 b0faeae 9b95c22 b0faeae 9b95c22 b0faeae 9b95c22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
library_name: transformers
tags:
- generated_from_trainer
datasets:
- kanishka/babylm2-clean-spacy
metrics:
- accuracy
model-index:
- name: opt-babylm2-clean-spacy-32k_seed-42_3e-4
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: kanishka/babylm2-clean-spacy
type: kanishka/babylm2-clean-spacy
metrics:
- name: Accuracy
type: accuracy
value: 0.4234014597448438
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opt-babylm2-clean-spacy-32k_seed-42_3e-4
This model was trained from scratch on the kanishka/babylm2-clean-spacy dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0190
- Accuracy: 0.4234
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 32000
- num_epochs: 20.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 3.3944 | 1.0 | 15543 | 3.4212 | 0.3734 |
| 3.1245 | 2.0 | 31086 | 3.2037 | 0.3940 |
| 2.9807 | 3.0 | 46629 | 3.0794 | 0.4073 |
| 2.8872 | 4.0 | 62172 | 3.0205 | 0.4140 |
| 2.8286 | 5.0 | 77715 | 2.9885 | 0.4180 |
| 2.779 | 6.0 | 93258 | 2.9699 | 0.4206 |
| 2.7316 | 7.0 | 108801 | 2.9588 | 0.4222 |
| 2.6909 | 8.0 | 124344 | 2.9554 | 0.4233 |
| 2.6504 | 9.0 | 139887 | 2.9544 | 0.4238 |
| 2.6246 | 10.0 | 155430 | 2.9523 | 0.4244 |
| 2.5988 | 11.0 | 170973 | 2.9568 | 0.4248 |
| 2.5639 | 12.0 | 186516 | 2.9595 | 0.4248 |
| 2.5361 | 13.0 | 202059 | 2.9698 | 0.4248 |
| 2.5098 | 14.0 | 217602 | 2.9747 | 0.4247 |
| 2.4899 | 15.0 | 233145 | 2.9792 | 0.4247 |
| 2.4626 | 16.0 | 248688 | 2.9882 | 0.4244 |
| 2.4399 | 17.0 | 264231 | 2.9961 | 0.4243 |
| 2.4186 | 18.0 | 279774 | 3.0051 | 0.4239 |
| 2.3869 | 19.0 | 295317 | 3.0119 | 0.4237 |
| 2.3686 | 20.0 | 310860 | 3.0190 | 0.4234 |
### Framework versions
- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0
|