kamaldas commited on
Commit
725220b
·
1 Parent(s): 7c00c76

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 252.50 +/- 22.74
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f91a1e9c5e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f91a1e9c670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f91a1e9c700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f91a1e9c790>", "_build": "<function ActorCriticPolicy._build at 0x7f91a1e9c820>", "forward": "<function ActorCriticPolicy.forward at 0x7f91a1e9c8b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f91a1e9c940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f91a1e9c9d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f91a1e9ca60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f91a1e9caf0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f91a1e9cb80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f91a1e9cc10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f91a1e97840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673604181334454120, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZf1L3ZsmA+zjgEPiAIV75m/7S8lgF0PAAAAAAAAAAAACQkPA34sz+xGAA/wXf5vb/2GrzD9pO9AAAAAAAAAACm0pS9an6OPweogr3/N7++TpbivAYB57wAAAAAAAAAANpLZL62m94+kPNkPrbJpr6Mbby9bJ4vPQAAAAAAAAAA80q2vaefIT+VnBI8+Xuovp/ZX70NOmQ8AAAAAAAAAAAAUfs8bDulP64LAj63EcS+f2FUPRt3VD0AAAAAAAAAAGYR9rx7rqa69+o9N3OiEjKAgbu6m29atgAAgD8AAIA/AJ7GPe3VDz95nTC+UAeLvkyoA73IrWO9AAAAAAAAAAAmM5M9f7JlPo0VOD3vO2u+kp4AvfYiujwAAAAAAAAAAGbnYz1Io4m6P8gCMw/Ik7DsB7s6Z1KWswAAgD8AAIA/ja1KvmUuCz84tak+u56CvgKP2j19DNo9AAAAAAAAAAAAwUC9gBLhPsXOZr0tp4C+4o+9vYI5Mb0AAAAAAAAAAGrjf74HPVY/6PKTPJN5276W4HK+5uhyPgAAAAAAAAAAswYhPRTwpLrnBrW3nJKdsjGlZLobkNA2AACAPwAAgD8aPIm9dm6nP1bRHL7LT7K+gj3GvO6eVL0AAAAAAAAAAM1mVrz2sQy8fZhmu9RJmzzn4nA93/2AvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqKePwB/aYECUhpRSlIwBbJRN6AOMAXSUR0CSXT3u/k/9dX2UKGgGaAloD0MIQ+OJII6hcUCUhpRSlGgVTXcBaBZHQJJgYBMi8nN1fZQoaAZoCWgPQwjiH7b0aNBvQJSGlFKUaBVNeQFoFkdAkmENmcvugHV9lChoBmgJaA9DCJxQiIBD52NAlIaUUpRoFU3oA2gWR0CSYbgDRtxddX2UKGgGaAloD0MITOMXXklUcECUhpRSlGgVTZoCaBZHQJJiAYaYNRZ1fZQoaAZoCWgPQwhPstXlVHlxQJSGlFKUaBVNpQFoFkdAkmN4ZqEeyXV9lChoBmgJaA9DCNU/iGTIpm1AlIaUUpRoFU1eA2gWR0CSZ35pJwsHdX2UKGgGaAloD0MIhGHAkqtCcUCUhpRSlGgVTbICaBZHQJJo2lKsdT51fZQoaAZoCWgPQwg3wTdNX4VwQJSGlFKUaBVNiQFoFkdAkmk6NyYG+3V9lChoBmgJaA9DCPXyO03mI2ZAlIaUUpRoFU3oA2gWR0CSap1vES/TdX2UKGgGaAloD0MIxO3QsBhCYkCUhpRSlGgVTegDaBZHQJJr+oP07Kd1fZQoaAZoCWgPQwhxrIvbaLRFQJSGlFKUaBVNAgFoFkdAkm2aEal1sHV9lChoBmgJaA9DCM+ey9Qk129AlIaUUpRoFU2XAWgWR0CSgjt0FKTTdX2UKGgGaAloD0MIy0v+J38OckCUhpRSlGgVTdkDaBZHQJKCPWDpTuR1fZQoaAZoCWgPQwiTyamdIQRyQJSGlFKUaBVNSgFoFkdAkoLHAM2FWXV9lChoBmgJaA9DCONuEK2VdWVAlIaUUpRoFU3oA2gWR0CSgtCkoF3ZdX2UKGgGaAloD0MIXf5D+u3BcUCUhpRSlGgVTRkCaBZHQJKDHSv1UVB1fZQoaAZoCWgPQwiASL99naxuQJSGlFKUaBVNawFoFkdAkoVjNhVlw3V9lChoBmgJaA9DCAHChxKtp29AlIaUUpRoFU2DAWgWR0CShYokAxSHdX2UKGgGaAloD0MI2qz6XG2XRECUhpRSlGgVS8toFkdAkoqSrDIiknV9lChoBmgJaA9DCPlM9s8TcHJAlIaUUpRoFU1sAmgWR0CSjLCT2WY4dX2UKGgGaAloD0MIGFqdnKEpbkCUhpRSlGgVTfkBaBZHQJKNKjCYTkB1fZQoaAZoCWgPQwhNgjekkQRwQJSGlFKUaBVNBwFoFkdAko46h11W83V9lChoBmgJaA9DCOTYeoYwGHBAlIaUUpRoFU2fAWgWR0CSjuzTF2mpdX2UKGgGaAloD0MIWAIpsWtHcECUhpRSlGgVTUgBaBZHQJKQpXHR1HR1fZQoaAZoCWgPQwjdBrXf2tlyQJSGlFKUaBVNnQFoFkdAkpGFnh86WHV9lChoBmgJaA9DCH7GhQNhIHJAlIaUUpRoFU10AWgWR0CSllA6uGKydX2UKGgGaAloD0MIiJ//HjzVbECUhpRSlGgVTXkCaBZHQJKXaruIAOt1fZQoaAZoCWgPQwjMCkW639hwQJSGlFKUaBVNQgJoFkdAkpfWc8TzunV9lChoBmgJaA9DCMy0/SsrvHFAlIaUUpRoFU1pAWgWR0CSm64Ajps5dX2UKGgGaAloD0MIWfs72+PHckCUhpRSlGgVTSQCaBZHQJKb9Nh3JPt1fZQoaAZoCWgPQwiRCfg1EupxQJSGlFKUaBVN6gFoFkdAkpwXKnvUjXV9lChoBmgJaA9DCNF4IojzYm1AlIaUUpRoFU1nAmgWR0CSnH6JZW7wdX2UKGgGaAloD0MIOpD11OpmYUCUhpRSlGgVTegDaBZHQJKdsIPbwjN1fZQoaAZoCWgPQwjUu3g/7vtwQJSGlFKUaBVNTAFoFkdAkp4T0QK8c3V9lChoBmgJaA9DCHy45LjTW3FAlIaUUpRoFU2BAWgWR0CSnlXZoPCmdX2UKGgGaAloD0MI2eicn2KIbkCUhpRSlGgVTYYBaBZHQJKfkaZQYUF1fZQoaAZoCWgPQwhkdha9UwEaQJSGlFKUaBVLx2gWR0CSoBU+LWI5dX2UKGgGaAloD0MIIXh8e5czc0CUhpRSlGgVTV0BaBZHQJKgmUJOWSl1fZQoaAZoCWgPQwgaGk8EMZtxQJSGlFKUaBVNVwNoFkdAkqF5MHryD3V9lChoBmgJaA9DCEZB8Pj2ZjRAlIaUUpRoFUvKaBZHQJKlS0/nnuB1fZQoaAZoCWgPQwhk6xnCcV5xQJSGlFKUaBVNdwFoFkdAkqVbs8gZCXV9lChoBmgJaA9DCGechqjClnFAlIaUUpRoFU1qAWgWR0CSpcuxKQJYdX2UKGgGaAloD0MI1QW8zHATcECUhpRSlGgVTRwBaBZHQJKmf7vXsgN1fZQoaAZoCWgPQwjLn28LFnFtQJSGlFKUaBVNbwJoFkdAkqdf1tfoinV9lChoBmgJaA9DCGN+bmhKpGxAlIaUUpRoFU1RAWgWR0CSqFjKgZjydX2UKGgGaAloD0MINsgkI2dUcECUhpRSlGgVTYQDaBZHQJKo4v/R3Nd1fZQoaAZoCWgPQwidDflnBlhwQJSGlFKUaBVNXgFoFkdAkqvLSeAd4nV9lChoBmgJaA9DCAhYq3aNZnFAlIaUUpRoFU2kAmgWR0CSxEaiKziTdX2UKGgGaAloD0MI2QbuQB3JckCUhpRSlGgVTYgBaBZHQJLEWQkona51fZQoaAZoCWgPQwgl7NtJRJhSQJSGlFKUaBVLoGgWR0CSxOrXUYsNdX2UKGgGaAloD0MI/KawUkFEbECUhpRSlGgVTcgBaBZHQJLFtopQUHp1fZQoaAZoCWgPQwh0fR8OkvlwQJSGlFKUaBVNSAFoFkdAksaZUDMeOnV9lChoBmgJaA9DCJrS+ltCwXBAlIaUUpRoFU2jAWgWR0CSyICngpBpdX2UKGgGaAloD0MIWMhcGVTsbECUhpRSlGgVTRkBaBZHQJLIuXD3ueB1fZQoaAZoCWgPQwj2fqMdN2xsQJSGlFKUaBVNHgFoFkdAkslBCtzS1HV9lChoBmgJaA9DCOkPzTw5+nFAlIaUUpRoFU0sAWgWR0CSy2SwGGEgdX2UKGgGaAloD0MISrclcsEkc0CUhpRSlGgVTW4BaBZHQJLL9T6zmfZ1fZQoaAZoCWgPQwjRkPEoFU5vQJSGlFKUaBVNNwFoFkdAksy4TbnHN3V9lChoBmgJaA9DCLxa7swEnHFAlIaUUpRoFU06AWgWR0CSzVfms/6gdX2UKGgGaAloD0MIyhXe5aKvbECUhpRSlGgVTQQBaBZHQJLN3oOhCdB1fZQoaAZoCWgPQwjGGcOcoGltQJSGlFKUaBVNOAJoFkdAks7aOcUdrHV9lChoBmgJaA9DCPcF9MIdKG9AlIaUUpRoFU0SAWgWR0CSz2CWNWELdX2UKGgGaAloD0MII57sZgYKckCUhpRSlGgVS+doFkdAks98hxHXmXV9lChoBmgJaA9DCN0jm6smnnFAlIaUUpRoFU00AWgWR0CS0OvkRzzVdX2UKGgGaAloD0MIMErQX6hQcECUhpRSlGgVTTABaBZHQJLRTLjghr51fZQoaAZoCWgPQwiemWA4lx5xQJSGlFKUaBVNVAFoFkdAktGo0ALiM3V9lChoBmgJaA9DCMCTFi7r5HBAlIaUUpRoFU0DAWgWR0CS0t7lq8DkdX2UKGgGaAloD0MI3CvzVh12cUCUhpRSlGgVTSgBaBZHQJLTnhIe5nV1fZQoaAZoCWgPQwggmKPH73xTQJSGlFKUaBVLu2gWR0CS1AjqOcUedX2UKGgGaAloD0MIcCh8tg5qc0CUhpRSlGgVS/JoFkdAktSv4M4LkXV9lChoBmgJaA9DCP6arFFPBHFAlIaUUpRoFU1lAWgWR0CS1bhiLEUCdX2UKGgGaAloD0MIRnu8kA7MckCUhpRSlGgVS/ZoFkdAkta/epGWlnV9lChoBmgJaA9DCFExzt+EhHFAlIaUUpRoFU2RA2gWR0CS1x16mfoSdX2UKGgGaAloD0MIzojS3mAOb0CUhpRSlGgVTUMBaBZHQJLXQrBj4Hp1fZQoaAZoCWgPQwigG5qy09pvQJSGlFKUaBVNCwFoFkdAktjb/S6UaHV9lChoBmgJaA9DCA8pBki09HBAlIaUUpRoFU02AWgWR0CS2ju76Hj7dX2UKGgGaAloD0MIcCcR4d/KcECUhpRSlGgVTY0BaBZHQJLa+so2GZh1fZQoaAZoCWgPQwiGHFvPkElvQJSGlFKUaBVNMQFoFkdAktwSW/rSmnV9lChoBmgJaA9DCJ1kq8vpYnBAlIaUUpRoFU3XA2gWR0CS3HfF72L6dX2UKGgGaAloD0MIZK4Mqk3BcUCUhpRSlGgVTR0BaBZHQJLdDEXLvCx1fZQoaAZoCWgPQwgEOpM21bNyQJSGlFKUaBVNXgFoFkdAkt0+NLlFMXV9lChoBmgJaA9DCD3uW62TU3FAlIaUUpRoFUv/aBZHQJLdz2+PBBR1fZQoaAZoCWgPQwjac5maRDByQJSGlFKUaBVNqgFoFkdAkt3om9g4O3V9lChoBmgJaA9DCHR63o3FjHBAlIaUUpRoFU0pAWgWR0CS3jEDQqqfdX2UKGgGaAloD0MI/3ivWllycECUhpRSlGgVTQ8BaBZHQJLgKM6zVtp1fZQoaAZoCWgPQwiMoZxoV+FQQJSGlFKUaBVLuGgWR0CS4MDRc/t6dX2UKGgGaAloD0MIowOSsG8hbUCUhpRSlGgVTYIBaBZHQJLhyRW912d1fZQoaAZoCWgPQwgLRbqfE95yQJSGlFKUaBVN9QFoFkdAkuN94FA3UHV9lChoBmgJaA9DCK4upwTE/W9AlIaUUpRoFU1gAWgWR0CS48Jul41QdX2UKGgGaAloD0MINUbrqKqFcECUhpRSlGgVS/toFkdAkuWtp/PPcHV9lChoBmgJaA9DCDuMSX+vXXBAlIaUUpRoFU2WAWgWR0CS5cExZdOZdX2UKGgGaAloD0MIdF34wfliT0CUhpRSlGgVS/RoFkdAkuYIGY8dP3V9lChoBmgJaA9DCPnX8sr1yjpAlIaUUpRoFUvxaBZHQJLmH83uNPx1fZQoaAZoCWgPQwjNAYI5OrFxQJSGlFKUaBVN2gFoFkdAkubC7GvOhXV9lChoBmgJaA9DCDTz5JrC0XFAlIaUUpRoFU2WAWgWR0CS5325QP7OdX2UKGgGaAloD0MIpRDIJc7ncUCUhpRSlGgVTWwBaBZHQJLoFfzBhx51fZQoaAZoCWgPQwgQr+sXLD9wQJSGlFKUaBVNKAFoFkdAkuiTdLxqf3V9lChoBmgJaA9DCMSY9PdS+21AlIaUUpRoFU0zAWgWR0CS6UVghKUWdX2UKGgGaAloD0MIwtzu5f65ckCUhpRSlGgVTYEBaBZHQJLpxaTwDvF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd89190ae9b2d9265be3a29b72cb0e71a5eb6bd71958f31c3120fc69ff904a50
3
+ size 147408
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f91a1e9c5e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f91a1e9c670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f91a1e9c700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f91a1e9c790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f91a1e9c820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f91a1e9c8b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f91a1e9c940>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f91a1e9c9d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f91a1e9ca60>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f91a1e9caf0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f91a1e9cb80>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f91a1e9cc10>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f91a1e97840>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673604181334454120,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZf1L3ZsmA+zjgEPiAIV75m/7S8lgF0PAAAAAAAAAAAACQkPA34sz+xGAA/wXf5vb/2GrzD9pO9AAAAAAAAAACm0pS9an6OPweogr3/N7++TpbivAYB57wAAAAAAAAAANpLZL62m94+kPNkPrbJpr6Mbby9bJ4vPQAAAAAAAAAA80q2vaefIT+VnBI8+Xuovp/ZX70NOmQ8AAAAAAAAAAAAUfs8bDulP64LAj63EcS+f2FUPRt3VD0AAAAAAAAAAGYR9rx7rqa69+o9N3OiEjKAgbu6m29atgAAgD8AAIA/AJ7GPe3VDz95nTC+UAeLvkyoA73IrWO9AAAAAAAAAAAmM5M9f7JlPo0VOD3vO2u+kp4AvfYiujwAAAAAAAAAAGbnYz1Io4m6P8gCMw/Ik7DsB7s6Z1KWswAAgD8AAIA/ja1KvmUuCz84tak+u56CvgKP2j19DNo9AAAAAAAAAAAAwUC9gBLhPsXOZr0tp4C+4o+9vYI5Mb0AAAAAAAAAAGrjf74HPVY/6PKTPJN5276W4HK+5uhyPgAAAAAAAAAAswYhPRTwpLrnBrW3nJKdsjGlZLobkNA2AACAPwAAgD8aPIm9dm6nP1bRHL7LT7K+gj3GvO6eVL0AAAAAAAAAAM1mVrz2sQy8fZhmu9RJmzzn4nA93/2AvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqKePwB/aYECUhpRSlIwBbJRN6AOMAXSUR0CSXT3u/k/9dX2UKGgGaAloD0MIQ+OJII6hcUCUhpRSlGgVTXcBaBZHQJJgYBMi8nN1fZQoaAZoCWgPQwjiH7b0aNBvQJSGlFKUaBVNeQFoFkdAkmENmcvugHV9lChoBmgJaA9DCJxQiIBD52NAlIaUUpRoFU3oA2gWR0CSYbgDRtxddX2UKGgGaAloD0MITOMXXklUcECUhpRSlGgVTZoCaBZHQJJiAYaYNRZ1fZQoaAZoCWgPQwhPstXlVHlxQJSGlFKUaBVNpQFoFkdAkmN4ZqEeyXV9lChoBmgJaA9DCNU/iGTIpm1AlIaUUpRoFU1eA2gWR0CSZ35pJwsHdX2UKGgGaAloD0MIhGHAkqtCcUCUhpRSlGgVTbICaBZHQJJo2lKsdT51fZQoaAZoCWgPQwg3wTdNX4VwQJSGlFKUaBVNiQFoFkdAkmk6NyYG+3V9lChoBmgJaA9DCPXyO03mI2ZAlIaUUpRoFU3oA2gWR0CSap1vES/TdX2UKGgGaAloD0MIxO3QsBhCYkCUhpRSlGgVTegDaBZHQJJr+oP07Kd1fZQoaAZoCWgPQwhxrIvbaLRFQJSGlFKUaBVNAgFoFkdAkm2aEal1sHV9lChoBmgJaA9DCM+ey9Qk129AlIaUUpRoFU2XAWgWR0CSgjt0FKTTdX2UKGgGaAloD0MIy0v+J38OckCUhpRSlGgVTdkDaBZHQJKCPWDpTuR1fZQoaAZoCWgPQwiTyamdIQRyQJSGlFKUaBVNSgFoFkdAkoLHAM2FWXV9lChoBmgJaA9DCONuEK2VdWVAlIaUUpRoFU3oA2gWR0CSgtCkoF3ZdX2UKGgGaAloD0MIXf5D+u3BcUCUhpRSlGgVTRkCaBZHQJKDHSv1UVB1fZQoaAZoCWgPQwiASL99naxuQJSGlFKUaBVNawFoFkdAkoVjNhVlw3V9lChoBmgJaA9DCAHChxKtp29AlIaUUpRoFU2DAWgWR0CShYokAxSHdX2UKGgGaAloD0MI2qz6XG2XRECUhpRSlGgVS8toFkdAkoqSrDIiknV9lChoBmgJaA9DCPlM9s8TcHJAlIaUUpRoFU1sAmgWR0CSjLCT2WY4dX2UKGgGaAloD0MIGFqdnKEpbkCUhpRSlGgVTfkBaBZHQJKNKjCYTkB1fZQoaAZoCWgPQwhNgjekkQRwQJSGlFKUaBVNBwFoFkdAko46h11W83V9lChoBmgJaA9DCOTYeoYwGHBAlIaUUpRoFU2fAWgWR0CSjuzTF2mpdX2UKGgGaAloD0MIWAIpsWtHcECUhpRSlGgVTUgBaBZHQJKQpXHR1HR1fZQoaAZoCWgPQwjdBrXf2tlyQJSGlFKUaBVNnQFoFkdAkpGFnh86WHV9lChoBmgJaA9DCH7GhQNhIHJAlIaUUpRoFU10AWgWR0CSllA6uGKydX2UKGgGaAloD0MIiJ//HjzVbECUhpRSlGgVTXkCaBZHQJKXaruIAOt1fZQoaAZoCWgPQwjMCkW639hwQJSGlFKUaBVNQgJoFkdAkpfWc8TzunV9lChoBmgJaA9DCMy0/SsrvHFAlIaUUpRoFU1pAWgWR0CSm64Ajps5dX2UKGgGaAloD0MIWfs72+PHckCUhpRSlGgVTSQCaBZHQJKb9Nh3JPt1fZQoaAZoCWgPQwiRCfg1EupxQJSGlFKUaBVN6gFoFkdAkpwXKnvUjXV9lChoBmgJaA9DCNF4IojzYm1AlIaUUpRoFU1nAmgWR0CSnH6JZW7wdX2UKGgGaAloD0MIOpD11OpmYUCUhpRSlGgVTegDaBZHQJKdsIPbwjN1fZQoaAZoCWgPQwjUu3g/7vtwQJSGlFKUaBVNTAFoFkdAkp4T0QK8c3V9lChoBmgJaA9DCHy45LjTW3FAlIaUUpRoFU2BAWgWR0CSnlXZoPCmdX2UKGgGaAloD0MI2eicn2KIbkCUhpRSlGgVTYYBaBZHQJKfkaZQYUF1fZQoaAZoCWgPQwhkdha9UwEaQJSGlFKUaBVLx2gWR0CSoBU+LWI5dX2UKGgGaAloD0MIIXh8e5czc0CUhpRSlGgVTV0BaBZHQJKgmUJOWSl1fZQoaAZoCWgPQwgaGk8EMZtxQJSGlFKUaBVNVwNoFkdAkqF5MHryD3V9lChoBmgJaA9DCEZB8Pj2ZjRAlIaUUpRoFUvKaBZHQJKlS0/nnuB1fZQoaAZoCWgPQwhk6xnCcV5xQJSGlFKUaBVNdwFoFkdAkqVbs8gZCXV9lChoBmgJaA9DCGechqjClnFAlIaUUpRoFU1qAWgWR0CSpcuxKQJYdX2UKGgGaAloD0MI1QW8zHATcECUhpRSlGgVTRwBaBZHQJKmf7vXsgN1fZQoaAZoCWgPQwjLn28LFnFtQJSGlFKUaBVNbwJoFkdAkqdf1tfoinV9lChoBmgJaA9DCGN+bmhKpGxAlIaUUpRoFU1RAWgWR0CSqFjKgZjydX2UKGgGaAloD0MINsgkI2dUcECUhpRSlGgVTYQDaBZHQJKo4v/R3Nd1fZQoaAZoCWgPQwidDflnBlhwQJSGlFKUaBVNXgFoFkdAkqvLSeAd4nV9lChoBmgJaA9DCAhYq3aNZnFAlIaUUpRoFU2kAmgWR0CSxEaiKziTdX2UKGgGaAloD0MI2QbuQB3JckCUhpRSlGgVTYgBaBZHQJLEWQkona51fZQoaAZoCWgPQwgl7NtJRJhSQJSGlFKUaBVLoGgWR0CSxOrXUYsNdX2UKGgGaAloD0MI/KawUkFEbECUhpRSlGgVTcgBaBZHQJLFtopQUHp1fZQoaAZoCWgPQwh0fR8OkvlwQJSGlFKUaBVNSAFoFkdAksaZUDMeOnV9lChoBmgJaA9DCJrS+ltCwXBAlIaUUpRoFU2jAWgWR0CSyICngpBpdX2UKGgGaAloD0MIWMhcGVTsbECUhpRSlGgVTRkBaBZHQJLIuXD3ueB1fZQoaAZoCWgPQwj2fqMdN2xsQJSGlFKUaBVNHgFoFkdAkslBCtzS1HV9lChoBmgJaA9DCOkPzTw5+nFAlIaUUpRoFU0sAWgWR0CSy2SwGGEgdX2UKGgGaAloD0MISrclcsEkc0CUhpRSlGgVTW4BaBZHQJLL9T6zmfZ1fZQoaAZoCWgPQwjRkPEoFU5vQJSGlFKUaBVNNwFoFkdAksy4TbnHN3V9lChoBmgJaA9DCLxa7swEnHFAlIaUUpRoFU06AWgWR0CSzVfms/6gdX2UKGgGaAloD0MIyhXe5aKvbECUhpRSlGgVTQQBaBZHQJLN3oOhCdB1fZQoaAZoCWgPQwjGGcOcoGltQJSGlFKUaBVNOAJoFkdAks7aOcUdrHV9lChoBmgJaA9DCPcF9MIdKG9AlIaUUpRoFU0SAWgWR0CSz2CWNWELdX2UKGgGaAloD0MII57sZgYKckCUhpRSlGgVS+doFkdAks98hxHXmXV9lChoBmgJaA9DCN0jm6smnnFAlIaUUpRoFU00AWgWR0CS0OvkRzzVdX2UKGgGaAloD0MIMErQX6hQcECUhpRSlGgVTTABaBZHQJLRTLjghr51fZQoaAZoCWgPQwiemWA4lx5xQJSGlFKUaBVNVAFoFkdAktGo0ALiM3V9lChoBmgJaA9DCMCTFi7r5HBAlIaUUpRoFU0DAWgWR0CS0t7lq8DkdX2UKGgGaAloD0MI3CvzVh12cUCUhpRSlGgVTSgBaBZHQJLTnhIe5nV1fZQoaAZoCWgPQwggmKPH73xTQJSGlFKUaBVLu2gWR0CS1AjqOcUedX2UKGgGaAloD0MIcCh8tg5qc0CUhpRSlGgVS/JoFkdAktSv4M4LkXV9lChoBmgJaA9DCP6arFFPBHFAlIaUUpRoFU1lAWgWR0CS1bhiLEUCdX2UKGgGaAloD0MIRnu8kA7MckCUhpRSlGgVS/ZoFkdAkta/epGWlnV9lChoBmgJaA9DCFExzt+EhHFAlIaUUpRoFU2RA2gWR0CS1x16mfoSdX2UKGgGaAloD0MIzojS3mAOb0CUhpRSlGgVTUMBaBZHQJLXQrBj4Hp1fZQoaAZoCWgPQwigG5qy09pvQJSGlFKUaBVNCwFoFkdAktjb/S6UaHV9lChoBmgJaA9DCA8pBki09HBAlIaUUpRoFU02AWgWR0CS2ju76Hj7dX2UKGgGaAloD0MIcCcR4d/KcECUhpRSlGgVTY0BaBZHQJLa+so2GZh1fZQoaAZoCWgPQwiGHFvPkElvQJSGlFKUaBVNMQFoFkdAktwSW/rSmnV9lChoBmgJaA9DCJ1kq8vpYnBAlIaUUpRoFU3XA2gWR0CS3HfF72L6dX2UKGgGaAloD0MIZK4Mqk3BcUCUhpRSlGgVTR0BaBZHQJLdDEXLvCx1fZQoaAZoCWgPQwgEOpM21bNyQJSGlFKUaBVNXgFoFkdAkt0+NLlFMXV9lChoBmgJaA9DCD3uW62TU3FAlIaUUpRoFUv/aBZHQJLdz2+PBBR1fZQoaAZoCWgPQwjac5maRDByQJSGlFKUaBVNqgFoFkdAkt3om9g4O3V9lChoBmgJaA9DCHR63o3FjHBAlIaUUpRoFU0pAWgWR0CS3jEDQqqfdX2UKGgGaAloD0MI/3ivWllycECUhpRSlGgVTQ8BaBZHQJLgKM6zVtp1fZQoaAZoCWgPQwiMoZxoV+FQQJSGlFKUaBVLuGgWR0CS4MDRc/t6dX2UKGgGaAloD0MIowOSsG8hbUCUhpRSlGgVTYIBaBZHQJLhyRW912d1fZQoaAZoCWgPQwgLRbqfE95yQJSGlFKUaBVN9QFoFkdAkuN94FA3UHV9lChoBmgJaA9DCK4upwTE/W9AlIaUUpRoFU1gAWgWR0CS48Jul41QdX2UKGgGaAloD0MINUbrqKqFcECUhpRSlGgVS/toFkdAkuWtp/PPcHV9lChoBmgJaA9DCDuMSX+vXXBAlIaUUpRoFU2WAWgWR0CS5cExZdOZdX2UKGgGaAloD0MIdF34wfliT0CUhpRSlGgVS/RoFkdAkuYIGY8dP3V9lChoBmgJaA9DCPnX8sr1yjpAlIaUUpRoFUvxaBZHQJLmH83uNPx1fZQoaAZoCWgPQwjNAYI5OrFxQJSGlFKUaBVN2gFoFkdAkubC7GvOhXV9lChoBmgJaA9DCDTz5JrC0XFAlIaUUpRoFU2WAWgWR0CS5325QP7OdX2UKGgGaAloD0MIpRDIJc7ncUCUhpRSlGgVTWwBaBZHQJLoFfzBhx51fZQoaAZoCWgPQwgQr+sXLD9wQJSGlFKUaBVNKAFoFkdAkuiTdLxqf3V9lChoBmgJaA9DCMSY9PdS+21AlIaUUpRoFU0zAWgWR0CS6UVghKUWdX2UKGgGaAloD0MIwtzu5f65ckCUhpRSlGgVTYEBaBZHQJLpxaTwDvF1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f09f1c448af2ba6f400f117baaa540fc54eae3da289c8e9258d95c5b188586f
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e26d78f4e6f189dc385b2ef48a85e0d94dd3d30b22f2cd508b5ad1fad5c2acdf
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (230 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 252.50481520650592, "std_reward": 22.743080503418373, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-13T10:30:46.075279"}