--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - modernbert - zeroshot metrics: - accuracy - f1 - precision - recall model-index: - name: modernbert-zeroshot-xnli-eng-0.1 results: [] datasets: - facebook/xnli language: - en pipeline_tag: zero-shot-classification --- # modernbert-zeroshot-xnli-eng-0.1 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on 10% of the english subset of facebook/xnli dataset. It achieves the following results on the evaluation set: - Test Loss: 0.3539 - F1: 0.8596 ## Model description answerdotai/ModernBERT-base ## Intended uses & limitations ## Training and evaluation data 10% of the english subset of facebook/xnli dataset. ## Training procedure trained on a single gpu for apx. 20 mins. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.0801 | 0.1629 | 200 | 0.8987 | 0.5868 | 0.5820 | 0.6637 | 0.5868 | | 0.6737 | 0.3257 | 400 | 0.4906 | 0.8184 | 0.8181 | 0.8340 | 0.8184 | | 0.5361 | 0.4886 | 600 | 0.3931 | 0.8723 | 0.8724 | 0.8759 | 0.8723 | | 0.4933 | 0.6515 | 800 | 0.3664 | 0.8782 | 0.8786 | 0.8853 | 0.8782 | | 0.4728 | 0.8143 | 1000 | 0.4300 | 0.8303 | 0.8306 | 0.8604 | 0.8303 | | 0.4434 | 0.9772 | 1200 | 0.3210 | 0.8922 | 0.8923 | 0.8925 | 0.8922 | | 0.2859 | 1.1401 | 1400 | 0.3657 | 0.8483 | 0.8502 | 0.8651 | 0.8483 | | 0.2768 | 1.3029 | 1600 | 0.4162 | 0.8403 | 0.8397 | 0.8520 | 0.8403 | | 0.258 | 1.4658 | 1800 | 0.4072 | 0.8543 | 0.8543 | 0.8634 | 0.8543 | | 0.2657 | 1.6287 | 2000 | 0.3763 | 0.8463 | 0.8460 | 0.8537 | 0.8463 | | 0.2721 | 1.7915 | 2200 | 0.3940 | 0.8463 | 0.8464 | 0.8595 | 0.8463 | | 0.2878 | 1.9544 | 2400 | 0.3539 | 0.8603 | 0.8596 | 0.8641 | 0.8603 | | 0.1366 | 2.1173 | 2600 | 0.7444 | 0.8343 | 0.8371 | 0.8738 | 0.8343 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.21.0