--- license: apache-2.0 base_model: google/bert_uncased_L-6_H-768_A-12 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_uncased_L-6_H-768_A-12-QAT results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8302752293577982 --- # bert_uncased_L-6_H-768_A-12-QAT This model is a fine-tuned version of [google/bert_uncased_L-6_H-768_A-12](https://huggingface.co/google/bert_uncased_L-6_H-768_A-12) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4989 - Accuracy: 0.8303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3055 | 1.0 | 8 | 0.4989 | 0.8303 | | 0.192 | 2.0 | 16 | 0.4659 | 0.8108 | | 0.0994 | 3.0 | 24 | 0.5389 | 0.8177 | | 0.0324 | 4.0 | 32 | 0.7313 | 0.8096 | | 0.0164 | 5.0 | 40 | 0.6689 | 0.8211 | | 0.0137 | 6.0 | 48 | 0.7148 | 0.8154 | | 0.0041 | 7.0 | 56 | 0.7339 | 0.8177 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0