--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper-Small Augmented for SEP-28k results: [] --- # Whisper-Small Augmented for SEP-28k This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the SEP-28K dataset. It achieves the following results on the evaluation set: - Loss: 0.7265 - Wer: 13.7591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5910 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0229 | 5.1020 | 1000 | 0.5061 | 13.5547 | | 0.0018 | 10.2041 | 2000 | 0.6259 | 13.6204 | | 0.0006 | 15.3061 | 3000 | 0.6754 | 13.6496 | | 0.0005 | 20.4082 | 4000 | 0.7105 | 13.7007 | | 0.0004 | 25.5102 | 5000 | 0.7265 | 13.7591 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0