--- tags: - asteroid - audio - audio-source-separation datasets: - wham - sep_clean license: cc-by-sa-3.0 --- ## Asteroid model `mpariente/DPRNNTasNet(ks=16)_WHAM!_sepclean` ♻️ Imported from https://zenodo.org/record/3903795#.X8pMBRNKjUI This model was trained by Manuel Pariente using the wham/DPRNN recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the sep_clean task of the WHAM! dataset. ### Demo: How to use in Asteroid ```python # coming soon ``` ### Training config - data: - mode: min - nondefault_nsrc: None - sample_rate: 8000 - segment: 2.0 - task: sep_clean - train_dir: data/wav8k/min/tr - valid_dir: data/wav8k/min/cv - filterbank: - kernel_size: 16 - n_filters: 64 - stride: 8 - main_args: - exp_dir: exp/train_dprnn_ks16/ - help: None - masknet: - bidirectional: True - bn_chan: 128 - chunk_size: 100 - dropout: 0 - hid_size: 128 - hop_size: 50 - in_chan: 64 - mask_act: sigmoid - n_repeats: 6 - n_src: 2 - out_chan: 64 - optim: - lr: 0.001 - optimizer: adam - weight_decay: 1e-05 - positional arguments: - training: - batch_size: 6 - early_stop: True - epochs: 200 - gradient_clipping: 5 - half_lr: True - num_workers: 6 #### Results - `si_sdr`: 18.227683982688003 - `si_sdr_imp`: 18.22883576588251 - `sdr`: 18.617789605060587 - `sdr_imp`: 18.466745426438173 - `sir`: 29.22773720052717 - `sir_imp`: 29.07669302190474 - `sar`: 19.116352171914485 - `sar_imp`: -130.06009796503054 - `stoi`: 0.9722025377865715 - `stoi_imp`: 0.23415680987800583 ### Citing Asteroid ```BibTex @inproceedings{Pariente2020Asteroid, title={Asteroid: the {PyTorch}-based audio source separation toolkit for researchers}, author={Manuel Pariente and Samuele Cornell and Joris Cosentino and Sunit Sivasankaran and Efthymios Tzinis and Jens Heitkaemper and Michel Olvera and Fabian-Robert Stöter and Mathieu Hu and Juan M. Martín-Doñas and David Ditter and Ariel Frank and Antoine Deleforge and Emmanuel Vincent}, year={2020}, booktitle={Proc. Interspeech}, } ``` Or on arXiv: ```bibtex @misc{pariente2020asteroid, title={Asteroid: the PyTorch-based audio source separation toolkit for researchers}, author={Manuel Pariente and Samuele Cornell and Joris Cosentino and Sunit Sivasankaran and Efthymios Tzinis and Jens Heitkaemper and Michel Olvera and Fabian-Robert Stöter and Mathieu Hu and Juan M. Martín-Doñas and David Ditter and Ariel Frank and Antoine Deleforge and Emmanuel Vincent}, year={2020}, eprint={2005.04132}, archivePrefix={arXiv}, primaryClass={eess.AS} } ```