juliadollis commited on
Commit
e033428
·
verified ·
1 Parent(s): b7dea27

End of training

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
  base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit
3
  library_name: transformers
4
- model_name: mistral_track1_unsloth3
5
  tags:
6
  - generated_from_trainer
7
  - unsloth
@@ -10,7 +10,7 @@ tags:
10
  licence: license
11
  ---
12
 
13
- # Model Card for mistral_track1_unsloth3
14
 
15
  This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.3-bnb-4bit](https://huggingface.co/unsloth/mistral-7b-instruct-v0.3-bnb-4bit).
16
  It has been trained using [TRL](https://github.com/huggingface/trl).
@@ -21,7 +21,7 @@ It has been trained using [TRL](https://github.com/huggingface/trl).
21
  from transformers import pipeline
22
 
23
  question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
24
- generator = pipeline("text-generation", model="julia-se/mistral_track1_unsloth3", device="cuda")
25
  output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
26
  print(output["generated_text"])
27
  ```
 
1
  ---
2
  base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit
3
  library_name: transformers
4
+ model_name: mistral_akcit_multilabel_teste
5
  tags:
6
  - generated_from_trainer
7
  - unsloth
 
10
  licence: license
11
  ---
12
 
13
+ # Model Card for mistral_akcit_multilabel_teste
14
 
15
  This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.3-bnb-4bit](https://huggingface.co/unsloth/mistral-7b-instruct-v0.3-bnb-4bit).
16
  It has been trained using [TRL](https://github.com/huggingface/trl).
 
21
  from transformers import pipeline
22
 
23
  question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
24
+ generator = pipeline("text-generation", model="juliadollis/mistral_akcit_multilabel_teste", device="cuda")
25
  output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
26
  print(output["generated_text"])
27
  ```