--- library_name: peft license: apache-2.0 base_model: mistralai/Mistral-7B-Instruct-v0.3 tags: - generated_from_trainer model-index: - name: mistral-finetuned-toxicity3 results: [] --- # mistral-finetuned-toxicity3 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7477 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.9782 | 0.0185 | 200 | 0.9489 | | 0.9499 | 0.0370 | 400 | 0.9159 | | 0.8738 | 0.0555 | 600 | 0.9025 | | 0.9153 | 0.0740 | 800 | 0.8785 | | 0.8624 | 0.0925 | 1000 | 0.8715 | | 0.8629 | 0.1110 | 1200 | 0.8655 | | 0.8632 | 0.1294 | 1400 | 0.8521 | | 0.838 | 0.1479 | 1600 | 0.8503 | | 0.8168 | 0.1664 | 1800 | 0.8456 | | 0.8198 | 0.1849 | 2000 | 0.8389 | | 0.8243 | 0.2034 | 2200 | 0.8277 | | 0.814 | 0.2219 | 2400 | 0.8315 | | 0.8027 | 0.2404 | 2600 | 0.8229 | | 0.8192 | 0.2589 | 2800 | 0.8173 | | 0.8178 | 0.2774 | 3000 | 0.8161 | | 0.7955 | 0.2959 | 3200 | 0.8132 | | 0.786 | 0.3144 | 3400 | 0.8081 | | 0.8196 | 0.3329 | 3600 | 0.8046 | | 0.7996 | 0.3514 | 3800 | 0.8034 | | 0.8236 | 0.3699 | 4000 | 0.7995 | | 0.8192 | 0.3883 | 4200 | 0.7965 | | 0.7898 | 0.4068 | 4400 | 0.7920 | | 0.8018 | 0.4253 | 4600 | 0.7896 | | 0.7837 | 0.4438 | 4800 | 0.7881 | | 0.7802 | 0.4623 | 5000 | 0.7885 | | 0.7856 | 0.4808 | 5200 | 0.7847 | | 0.7873 | 0.4993 | 5400 | 0.7813 | | 0.787 | 0.5178 | 5600 | 0.7806 | | 0.7871 | 0.5363 | 5800 | 0.7781 | | 0.7955 | 0.5548 | 6000 | 0.7787 | | 0.7857 | 0.5733 | 6200 | 0.7745 | | 0.7817 | 0.5918 | 6400 | 0.7729 | | 0.7841 | 0.6103 | 6600 | 0.7735 | | 0.7474 | 0.6288 | 6800 | 0.7683 | | 0.7597 | 0.6472 | 7000 | 0.7707 | | 0.7591 | 0.6657 | 7200 | 0.7666 | | 0.7615 | 0.6842 | 7400 | 0.7646 | | 0.7366 | 0.7027 | 7600 | 0.7647 | | 0.7697 | 0.7212 | 7800 | 0.7611 | | 0.7387 | 0.7397 | 8000 | 0.7599 | | 0.7503 | 0.7582 | 8200 | 0.7577 | | 0.7545 | 0.7767 | 8400 | 0.7566 | | 0.7734 | 0.7952 | 8600 | 0.7540 | | 0.7512 | 0.8137 | 8800 | 0.7532 | | 0.7627 | 0.8322 | 9000 | 0.7512 | | 0.7519 | 0.8507 | 9200 | 0.7520 | | 0.7556 | 0.8692 | 9400 | 0.7489 | | 0.7667 | 0.8877 | 9600 | 0.7472 | | 0.7458 | 0.9061 | 9800 | 0.7465 | | 0.7191 | 0.9246 | 10000 | 0.7457 | | 0.7396 | 0.9431 | 10200 | 0.7423 | | 0.7281 | 0.9616 | 10400 | 0.7426 | | 0.7219 | 0.9801 | 10600 | 0.7416 | | 0.7237 | 0.9986 | 10800 | 0.7389 | | 0.589 | 1.0171 | 11000 | 0.7538 | | 0.6071 | 1.0356 | 11200 | 0.7503 | | 0.5696 | 1.0541 | 11400 | 0.7547 | | 0.6019 | 1.0726 | 11600 | 0.7498 | | 0.5741 | 1.0911 | 11800 | 0.7551 | | 0.5922 | 1.1096 | 12000 | 0.7527 | | 0.5721 | 1.1281 | 12200 | 0.7534 | | 0.5856 | 1.1466 | 12400 | 0.7526 | | 0.5775 | 1.1650 | 12600 | 0.7549 | | 0.5911 | 1.1835 | 12800 | 0.7511 | | 0.5983 | 1.2020 | 13000 | 0.7494 | | 0.6213 | 1.2205 | 13200 | 0.7460 | | 0.6006 | 1.2390 | 13400 | 0.7468 | | 0.5658 | 1.2575 | 13600 | 0.7477 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.1.0 - Datasets 3.1.0 - Tokenizers 0.20.3