--- base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BioBERT_JNLPBA_NER_new results: [] --- # BioBERT_JNLPBA_NER_new This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1458 - Precision: 0.9574 - Recall: 0.9541 - F1: 0.9557 - Accuracy: 0.9523 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1682 | 1.0 | 1164 | 0.1472 | 0.9552 | 0.9524 | 0.9538 | 0.9501 | | 0.1307 | 2.0 | 2328 | 0.1474 | 0.9570 | 0.9532 | 0.9551 | 0.9515 | | 0.107 | 3.0 | 3492 | 0.1458 | 0.9574 | 0.9541 | 0.9557 | 0.9523 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0