--- base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BioBERT_CRAFT_NER results: [] --- # BioBERT_CRAFT_NER This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1098 - Precision: 0.8541 - Recall: 0.8613 - F1: 0.8577 - Accuracy: 0.9732 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 347 | 0.1174 | 0.8216 | 0.8235 | 0.8225 | 0.9669 | | 0.1712 | 2.0 | 695 | 0.1091 | 0.8469 | 0.8596 | 0.8532 | 0.9724 | | 0.0415 | 3.0 | 1041 | 0.1098 | 0.8541 | 0.8613 | 0.8577 | 0.9732 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0