--- language: - da license: apache-2.0 tags: - generated_from_trainer - hf-asr-leaderboard - whisper-event metrics: - wer model-index: - name: Whisper Medium Danish (CV11 + FLEAURS) results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 da type: mozilla-foundation/common_voice_11_0 args: 'config: ml, split: test' metrics: - name: Wer type: wer value: 13.708574434508153 --- # Whisper Medium Danish (CV11 + FLEAURS) This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0,google/fleurs da,da_dk dataset. It achieves the following results on the evaluation set: - Loss: 0.5814 - Wer: 13.7086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.0265 | 3.14 | 1000 | 0.3690 | 14.7607 | | 0.0063 | 6.29 | 2000 | 0.4342 | 14.0926 | | 0.0016 | 9.43 | 3000 | 0.4847 | 14.3609 | | 0.002 | 12.58 | 4000 | 0.4919 | 14.1715 | | 0.0013 | 15.72 | 5000 | 0.5114 | 14.2294 | | 0.0014 | 18.87 | 6000 | 0.5197 | 13.9137 | | 0.0003 | 22.01 | 7000 | 0.5422 | 14.1978 | | 0.0001 | 25.16 | 8000 | 0.5659 | 13.8716 | | 0.0001 | 28.3 | 9000 | 0.5772 | 13.7296 | | 0.0001 | 31.45 | 10000 | 0.5814 | 13.7086 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2