File size: 1,795 Bytes
f7750c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
base_model: bigscience/mt0-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt0-small-query-extraction-v4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt0-small-query-extraction-v4

This model is a fine-tuned version of [bigscience/mt0-small](https://huggingface.co/bigscience/mt0-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0016
- Rouge1: 55.6206
- Rouge2: 48.0808
- Rougel: 55.6125
- Rougelsum: 55.6119
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 0.0121        | 1.0   | 110364 | 0.0040          | 55.607  | 48.038  | 55.5908 | 55.5903   | 19.0    |
| 0.0045        | 2.0   | 220728 | 0.0021          | 55.6226 | 48.0812 | 55.6123 | 55.6125   | 19.0    |
| 0.003         | 3.0   | 331092 | 0.0016          | 55.6206 | 48.0808 | 55.6125 | 55.6119   | 19.0    |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1