--- library_name: transformers tags: - chocolatine license: apache-2.0 datasets: - jpacifico/french-orca-dpo-pairs-revised language: - fr - en --- ### Chocolatine-2-14B DPO fine-tuning experiment of [sometimesanotion/Lamarck-14B-v0.7](https://huggingface.co/sometimesanotion/Lamarck-14B-v0.7) (14B params) using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datasets/jpacifico/french-orca-dpo-pairs-revised) rlhf dataset. Training in French also improves the model in English *Long-context Support up to 128K tokens and can generate up to 8K tokens.* ### OpenLLM Leaderboard coming soon ### MT-Bench coming soon ### Usage You can run this model using my [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_14B_inference_test_colab.ipynb) You can also run Chocolatine using the following code: ```python import transformers from transformers import AutoTokenizer # Format prompt message = [ {"role": "system", "content": "You are a helpful assistant chatbot."}, {"role": "user", "content": "What is a Large Language Model?"} ] tokenizer = AutoTokenizer.from_pretrained(new_model) prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) # Create pipeline pipeline = transformers.pipeline( "text-generation", model=new_model, tokenizer=tokenizer ) # Generate text sequences = pipeline( prompt, do_sample=True, temperature=0.7, top_p=0.9, num_return_sequences=1, max_length=200, ) print(sequences[0]['generated_text']) ``` ### Limitations The Chocolatine model series is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanism. - **Developed by:** Jonathan Pacifico, 2025 - **Model type:** LLM - **Language(s) (NLP):** French, English - **License:** Apache-2.0