File size: 6,498 Bytes
2c2cb7b
 
4b395e1
 
 
 
 
 
 
 
 
 
9d8e998
2c2cb7b
 
4b395e1
 
 
2c2cb7b
 
4b395e1
 
 
 
 
 
2c2cb7b
4b395e1
2c2cb7b
 
 
 
 
 
 
 
4b395e1
 
 
 
 
2c2cb7b
 
 
4b395e1
2c2cb7b
 
 
4b395e1
2c2cb7b
 
 
fc53152
 
 
 
9f3fdab
 
 
 
 
fc53152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f3fdab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc53152
 
 
2c2cb7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b395e1
 
2c2cb7b
 
 
4b395e1
2c2cb7b
 
 
4b395e1
2c2cb7b
 
 
4b395e1
2c2cb7b
 
 
4b395e1
2c2cb7b
 
 
 
 
4b395e1
2c2cb7b
 
 
 
 
4b395e1
2c2cb7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b395e1
2c2cb7b
 
 
4b395e1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
---
library_name: transformers
tags:
- phi3
- python
- dpo
- mypo
license: mit
datasets:
- joshuasundance/mypo-4k-rfc
language:
- en
pipeline_tag: text-generation
---

**This is a pipeline version of `joshuasundance/phi3-mini-4k-qlora-python-code-20k-mypo-4k-rfc`**


# Model Card for Model ID

* **Base Model**: https://huggingface.co/edumunozsala/phi3-mini-4k-qlora-python-code-20k
* **Preference Dataset**: https://huggingface.co/datasets/joshuasundance/mypo-4k-rfc
* **Training Code**: https://gist.github.com/joshuasundance-swca/a94672960733782865932a645587ccdc
* **Training Metrics**: [trainer_state.json](trainer_state.json)

This is an experimental model made by using `joshuasundance/mypo-4k-rfc` for DPO training of `edumunozsala/phi3-mini-4k-qlora-python-code-20k`.

The goal is to learn about model training and potentially get the base model to reliably produce Python with type hints. I chose `edumunozsala/phi3-mini-4k-qlora-python-code-20k` because I was able to train this model in one hour on my laptop.


## Model Details

### Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

- **Developed by:** Joshua Sundance Bailey
- **Model type:** phi 3 qlora DPO
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model [optional]:** `edumunozsala/phi3-mini-4k-qlora-python-code-20k`

### Model Sources [optional]

- **Training Code:** https://gist.github.com/joshuasundance-swca/a94672960733782865932a645587ccdc

## Uses

For evaluation and testing only. Do not expect great results, and do not use this model for anything important. It has not been evaluated in any way after training.

### Direct Use

```python
from transformers import pipeline


pipe = pipeline(
    "text-generation",
    model="joshuasundance/phi3-mini-4k-qlora-python-code-20k-mypo-4k-rfc-pipe",
    trust_remote_code=True,
)


prompt_template = """### Instruction:
Below is an instruction that describes a task. Write a response that appropriately completes the request.

ALWAYS use Python type hints for mypy.

### Instruction:
{instruction}

### Input:
{input}

### Output:
"""


def invoke(user_instruction: str, user_input: str = "") -> str:
    prompt_str = prompt_template.format(instruction=user_instruction, input=user_input)
    prompt = pipe.tokenizer.apply_chat_template(
        [{"role": "user", "content": prompt_str}],
        tokenize=False,
        add_generation_prompt=True,
    )
    outputs = pipe(
        prompt,
        max_new_tokens=256,
        do_sample=True,
        num_beams=1,
        temperature=0.3,
        top_k=50,
        top_p=0.95,
        max_time=180,
    )  # , eos_token_id=eos_token)
    return outputs[0]["generated_text"][len(prompt) :].strip()


user_instruction = (
    "Write a Python function that takes 3 ints, x, y, and z, and returns (x*z)//y."
)
user_input = ""

invoke(user_instruction, user_input)
```

[More Information Needed]

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

## Training Details

### Training Data

* Original qlora: `iamtarun/python_code_instructions_18k_alpaca`
* DPO: `joshuasundance/mypo-4k-rfc`

### Training Procedure

See training code using `peft`, `transformers`, and `trl`

#### Preprocessing [optional]

See training code using `peft`, `transformers`, and `trl`

#### Training Hyperparameters

See training code using `peft`, `transformers`, and `trl`

#### Speeds, Sizes, Times [optional]

See [trainer_state.json](trainer_state.json) in this repo

[More Information Needed]

## Evaluation

See [trainer_state.json](trainer_state.json) in this repo

### Testing Data, Factors & Metrics

#### Testing Data

20% of DPO dataset (see training code)

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

Joshua Sundance Bailey

## Model Card Contact

Joshua Sundance Bailey