jondurbin commited on
Commit
950fcb8
·
1 Parent(s): 91dbf92

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "airoboros-13b-gpt4-1.1",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 1,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 5120,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 13824,
12
+ "max_position_embeddings": 2048,
13
+ "max_sequence_length": 2048,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 40,
16
+ "num_hidden_layers": 40,
17
+ "pad_token_id": -1,
18
+ "rms_norm_eps": 1e-06,
19
+ "tie_word_embeddings": false,
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.28.1",
22
+ "use_cache": false,
23
+ "vocab_size": 32000
24
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": -1,
6
+ "transformers_version": "4.28.1"
7
+ }
pytorch_model-00001-of-00006.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b902638d8338272862f1ce8845bcd14cb764c0c3cdac3992bd9a3ffc2f8c078a
3
+ size 9956543883
pytorch_model-00002-of-00006.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87e5cdec0ad64d38d2a061b632b07f063e61cbd51c514f96561b0936687b92d4
3
+ size 9940856385
pytorch_model-00003-of-00006.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7574c0c0f421c2826ee2abadff794276fbbd697cb132d816762817bd14748926
3
+ size 9940856943
pytorch_model-00004-of-00006.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa6bf65831762f10e7dafee4ac973afef8088fd631ac4f09fdb21c5d318d5779
3
+ size 9867415289
pytorch_model-00005-of-00006.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e08974979849429bbb0dc2bff400d2bf8e408ea08c84ab9caeacb152ac16995c
3
+ size 9867456961
pytorch_model-00006-of-00006.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04a4012e52d5d277b94b206aa29a9cf15274e8b720db098a533cda020fd255a5
3
+ size 2490476207
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 52063467520
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00006-of-00006.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00006.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
268
+ "model.layers.32.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
269
+ "model.layers.32.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
270
+ "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
271
+ "model.layers.32.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
272
+ "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
273
+ "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
274
+ "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
275
+ "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
276
+ "model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
277
+ "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
278
+ "model.layers.33.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
279
+ "model.layers.33.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
280
+ "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
281
+ "model.layers.33.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
282
+ "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
283
+ "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
284
+ "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
285
+ "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
286
+ "model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
287
+ "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
288
+ "model.layers.34.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
289
+ "model.layers.34.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
290
+ "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
291
+ "model.layers.34.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
292
+ "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
293
+ "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
294
+ "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
295
+ "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
296
+ "model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
297
+ "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
298
+ "model.layers.35.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
299
+ "model.layers.35.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
300
+ "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
301
+ "model.layers.35.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
302
+ "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
303
+ "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
304
+ "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
305
+ "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
306
+ "model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
307
+ "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
308
+ "model.layers.36.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
309
+ "model.layers.36.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
310
+ "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
311
+ "model.layers.36.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
312
+ "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
313
+ "model.layers.36.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
314
+ "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
315
+ "model.layers.36.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
316
+ "model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
317
+ "model.layers.36.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
318
+ "model.layers.37.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
319
+ "model.layers.37.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
320
+ "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
321
+ "model.layers.37.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
322
+ "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
323
+ "model.layers.37.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
324
+ "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
325
+ "model.layers.37.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
326
+ "model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
327
+ "model.layers.37.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
328
+ "model.layers.38.input_layernorm.weight": "pytorch_model-00006-of-00006.bin",
329
+ "model.layers.38.mlp.down_proj.weight": "pytorch_model-00006-of-00006.bin",
330
+ "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
331
+ "model.layers.38.mlp.up_proj.weight": "pytorch_model-00006-of-00006.bin",
332
+ "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00006-of-00006.bin",
333
+ "model.layers.38.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
334
+ "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
335
+ "model.layers.38.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
336
+ "model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
337
+ "model.layers.38.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
338
+ "model.layers.39.input_layernorm.weight": "pytorch_model-00006-of-00006.bin",
339
+ "model.layers.39.mlp.down_proj.weight": "pytorch_model-00006-of-00006.bin",
340
+ "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00006-of-00006.bin",
341
+ "model.layers.39.mlp.up_proj.weight": "pytorch_model-00006-of-00006.bin",
342
+ "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00006-of-00006.bin",
343
+ "model.layers.39.self_attn.k_proj.weight": "pytorch_model-00006-of-00006.bin",
344
+ "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00006-of-00006.bin",
345
+ "model.layers.39.self_attn.q_proj.weight": "pytorch_model-00006-of-00006.bin",
346
+ "model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00006.bin",
347
+ "model.layers.39.self_attn.v_proj.weight": "pytorch_model-00006-of-00006.bin",
348
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
349
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
350
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
351
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
352
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
353
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
354
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
355
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
356
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
357
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
358
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
359
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
360
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
361
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
362
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
363
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
364
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
365
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
366
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
367
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
368
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
369
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
370
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
371
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
372
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
373
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
374
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
375
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
376
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
377
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
378
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
379
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
380
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
381
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
382
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
383
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
384
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
385
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
386
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
387
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
388
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
389
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
390
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
391
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
392
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
393
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
394
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
395
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
396
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
397
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
398
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
399
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
400
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
401
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
402
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
403
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
404
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
405
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
406
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
407
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
408
+ "model.norm.weight": "pytorch_model-00006-of-00006.bin"
409
+ }
410
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "model_max_length": 2048,
22
+ "pad_token": null,
23
+ "padding_side": "right",
24
+ "sp_model_kwargs": {},
25
+ "tokenizer_class": "LlamaTokenizer",
26
+ "unk_token": {
27
+ "__type": "AddedToken",
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
trainer_state.json ADDED
@@ -0,0 +1,3481 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "global_step": 576,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.01,
12
+ "learning_rate": 4.1666666666666667e-07,
13
+ "loss": 0.6228,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.01,
18
+ "learning_rate": 8.333333333333333e-07,
19
+ "loss": 0.6226,
20
+ "step": 2
21
+ },
22
+ {
23
+ "epoch": 0.02,
24
+ "learning_rate": 1.25e-06,
25
+ "loss": 0.5863,
26
+ "step": 3
27
+ },
28
+ {
29
+ "epoch": 0.02,
30
+ "learning_rate": 1.6666666666666667e-06,
31
+ "loss": 0.5544,
32
+ "step": 4
33
+ },
34
+ {
35
+ "epoch": 0.03,
36
+ "learning_rate": 2.0833333333333334e-06,
37
+ "loss": 0.4827,
38
+ "step": 5
39
+ },
40
+ {
41
+ "epoch": 0.03,
42
+ "learning_rate": 2.5e-06,
43
+ "loss": 0.6049,
44
+ "step": 6
45
+ },
46
+ {
47
+ "epoch": 0.04,
48
+ "learning_rate": 2.916666666666667e-06,
49
+ "loss": 0.5721,
50
+ "step": 7
51
+ },
52
+ {
53
+ "epoch": 0.04,
54
+ "learning_rate": 3.3333333333333333e-06,
55
+ "loss": 0.5307,
56
+ "step": 8
57
+ },
58
+ {
59
+ "epoch": 0.05,
60
+ "learning_rate": 3.7500000000000005e-06,
61
+ "loss": 0.5169,
62
+ "step": 9
63
+ },
64
+ {
65
+ "epoch": 0.05,
66
+ "learning_rate": 4.166666666666667e-06,
67
+ "loss": 0.6051,
68
+ "step": 10
69
+ },
70
+ {
71
+ "epoch": 0.06,
72
+ "learning_rate": 4.583333333333333e-06,
73
+ "loss": 0.5554,
74
+ "step": 11
75
+ },
76
+ {
77
+ "epoch": 0.06,
78
+ "learning_rate": 5e-06,
79
+ "loss": 0.4904,
80
+ "step": 12
81
+ },
82
+ {
83
+ "epoch": 0.07,
84
+ "learning_rate": 5.416666666666667e-06,
85
+ "loss": 0.538,
86
+ "step": 13
87
+ },
88
+ {
89
+ "epoch": 0.07,
90
+ "learning_rate": 5.833333333333334e-06,
91
+ "loss": 0.6105,
92
+ "step": 14
93
+ },
94
+ {
95
+ "epoch": 0.08,
96
+ "learning_rate": 6.25e-06,
97
+ "loss": 0.4848,
98
+ "step": 15
99
+ },
100
+ {
101
+ "epoch": 0.08,
102
+ "learning_rate": 6.666666666666667e-06,
103
+ "loss": 0.4959,
104
+ "step": 16
105
+ },
106
+ {
107
+ "epoch": 0.09,
108
+ "learning_rate": 7.083333333333335e-06,
109
+ "loss": 0.4867,
110
+ "step": 17
111
+ },
112
+ {
113
+ "epoch": 0.09,
114
+ "learning_rate": 7.500000000000001e-06,
115
+ "loss": 0.4887,
116
+ "step": 18
117
+ },
118
+ {
119
+ "epoch": 0.1,
120
+ "learning_rate": 7.916666666666667e-06,
121
+ "loss": 0.4997,
122
+ "step": 19
123
+ },
124
+ {
125
+ "epoch": 0.1,
126
+ "learning_rate": 8.333333333333334e-06,
127
+ "loss": 0.4535,
128
+ "step": 20
129
+ },
130
+ {
131
+ "epoch": 0.11,
132
+ "learning_rate": 8.750000000000001e-06,
133
+ "loss": 0.4364,
134
+ "step": 21
135
+ },
136
+ {
137
+ "epoch": 0.11,
138
+ "learning_rate": 9.166666666666666e-06,
139
+ "loss": 0.4912,
140
+ "step": 22
141
+ },
142
+ {
143
+ "epoch": 0.12,
144
+ "learning_rate": 9.583333333333335e-06,
145
+ "loss": 0.4796,
146
+ "step": 23
147
+ },
148
+ {
149
+ "epoch": 0.12,
150
+ "learning_rate": 1e-05,
151
+ "loss": 0.4205,
152
+ "step": 24
153
+ },
154
+ {
155
+ "epoch": 0.13,
156
+ "learning_rate": 9.999919023234347e-06,
157
+ "loss": 0.5209,
158
+ "step": 25
159
+ },
160
+ {
161
+ "epoch": 0.14,
162
+ "learning_rate": 9.999676095560278e-06,
163
+ "loss": 0.4793,
164
+ "step": 26
165
+ },
166
+ {
167
+ "epoch": 0.14,
168
+ "learning_rate": 9.999271224846397e-06,
169
+ "loss": 0.5478,
170
+ "step": 27
171
+ },
172
+ {
173
+ "epoch": 0.15,
174
+ "learning_rate": 9.998704424206747e-06,
175
+ "loss": 0.4269,
176
+ "step": 28
177
+ },
178
+ {
179
+ "epoch": 0.15,
180
+ "learning_rate": 9.997975712000405e-06,
181
+ "loss": 0.4837,
182
+ "step": 29
183
+ },
184
+ {
185
+ "epoch": 0.16,
186
+ "learning_rate": 9.99708511183087e-06,
187
+ "loss": 0.4503,
188
+ "step": 30
189
+ },
190
+ {
191
+ "epoch": 0.16,
192
+ "learning_rate": 9.996032652545316e-06,
193
+ "loss": 0.5008,
194
+ "step": 31
195
+ },
196
+ {
197
+ "epoch": 0.17,
198
+ "learning_rate": 9.994818368233639e-06,
199
+ "loss": 0.4619,
200
+ "step": 32
201
+ },
202
+ {
203
+ "epoch": 0.17,
204
+ "learning_rate": 9.993442298227365e-06,
205
+ "loss": 0.5088,
206
+ "step": 33
207
+ },
208
+ {
209
+ "epoch": 0.18,
210
+ "learning_rate": 9.991904487098376e-06,
211
+ "loss": 0.4037,
212
+ "step": 34
213
+ },
214
+ {
215
+ "epoch": 0.18,
216
+ "learning_rate": 9.990204984657458e-06,
217
+ "loss": 0.3666,
218
+ "step": 35
219
+ },
220
+ {
221
+ "epoch": 0.19,
222
+ "learning_rate": 9.988343845952697e-06,
223
+ "loss": 0.4376,
224
+ "step": 36
225
+ },
226
+ {
227
+ "epoch": 0.19,
228
+ "learning_rate": 9.98632113126769e-06,
229
+ "loss": 0.4527,
230
+ "step": 37
231
+ },
232
+ {
233
+ "epoch": 0.2,
234
+ "learning_rate": 9.984136906119592e-06,
235
+ "loss": 0.5132,
236
+ "step": 38
237
+ },
238
+ {
239
+ "epoch": 0.2,
240
+ "learning_rate": 9.981791241257001e-06,
241
+ "loss": 0.4329,
242
+ "step": 39
243
+ },
244
+ {
245
+ "epoch": 0.21,
246
+ "learning_rate": 9.979284212657658e-06,
247
+ "loss": 0.4311,
248
+ "step": 40
249
+ },
250
+ {
251
+ "epoch": 0.21,
252
+ "learning_rate": 9.976615901525988e-06,
253
+ "loss": 0.494,
254
+ "step": 41
255
+ },
256
+ {
257
+ "epoch": 0.22,
258
+ "learning_rate": 9.973786394290475e-06,
259
+ "loss": 0.4842,
260
+ "step": 42
261
+ },
262
+ {
263
+ "epoch": 0.22,
264
+ "learning_rate": 9.970795782600856e-06,
265
+ "loss": 0.3968,
266
+ "step": 43
267
+ },
268
+ {
269
+ "epoch": 0.23,
270
+ "learning_rate": 9.967644163325157e-06,
271
+ "loss": 0.4588,
272
+ "step": 44
273
+ },
274
+ {
275
+ "epoch": 0.23,
276
+ "learning_rate": 9.96433163854655e-06,
277
+ "loss": 0.5148,
278
+ "step": 45
279
+ },
280
+ {
281
+ "epoch": 0.24,
282
+ "learning_rate": 9.960858315560054e-06,
283
+ "loss": 0.4377,
284
+ "step": 46
285
+ },
286
+ {
287
+ "epoch": 0.24,
288
+ "learning_rate": 9.957224306869053e-06,
289
+ "loss": 0.3878,
290
+ "step": 47
291
+ },
292
+ {
293
+ "epoch": 0.25,
294
+ "learning_rate": 9.953429730181653e-06,
295
+ "loss": 0.4087,
296
+ "step": 48
297
+ },
298
+ {
299
+ "epoch": 0.26,
300
+ "learning_rate": 9.949474708406879e-06,
301
+ "loss": 0.3732,
302
+ "step": 49
303
+ },
304
+ {
305
+ "epoch": 0.26,
306
+ "learning_rate": 9.945359369650673e-06,
307
+ "loss": 0.3988,
308
+ "step": 50
309
+ },
310
+ {
311
+ "epoch": 0.27,
312
+ "learning_rate": 9.941083847211765e-06,
313
+ "loss": 0.4186,
314
+ "step": 51
315
+ },
316
+ {
317
+ "epoch": 0.27,
318
+ "learning_rate": 9.93664827957735e-06,
319
+ "loss": 0.4103,
320
+ "step": 52
321
+ },
322
+ {
323
+ "epoch": 0.28,
324
+ "learning_rate": 9.932052810418591e-06,
325
+ "loss": 0.4734,
326
+ "step": 53
327
+ },
328
+ {
329
+ "epoch": 0.28,
330
+ "learning_rate": 9.927297588585984e-06,
331
+ "loss": 0.3813,
332
+ "step": 54
333
+ },
334
+ {
335
+ "epoch": 0.29,
336
+ "learning_rate": 9.922382768104522e-06,
337
+ "loss": 0.4658,
338
+ "step": 55
339
+ },
340
+ {
341
+ "epoch": 0.29,
342
+ "learning_rate": 9.917308508168712e-06,
343
+ "loss": 0.4664,
344
+ "step": 56
345
+ },
346
+ {
347
+ "epoch": 0.3,
348
+ "learning_rate": 9.912074973137413e-06,
349
+ "loss": 0.4378,
350
+ "step": 57
351
+ },
352
+ {
353
+ "epoch": 0.3,
354
+ "learning_rate": 9.906682332528525e-06,
355
+ "loss": 0.4106,
356
+ "step": 58
357
+ },
358
+ {
359
+ "epoch": 0.31,
360
+ "learning_rate": 9.901130761013485e-06,
361
+ "loss": 0.3443,
362
+ "step": 59
363
+ },
364
+ {
365
+ "epoch": 0.31,
366
+ "learning_rate": 9.895420438411616e-06,
367
+ "loss": 0.5413,
368
+ "step": 60
369
+ },
370
+ {
371
+ "epoch": 0.32,
372
+ "learning_rate": 9.889551549684298e-06,
373
+ "loss": 0.4417,
374
+ "step": 61
375
+ },
376
+ {
377
+ "epoch": 0.32,
378
+ "learning_rate": 9.883524284928982e-06,
379
+ "loss": 0.411,
380
+ "step": 62
381
+ },
382
+ {
383
+ "epoch": 0.33,
384
+ "learning_rate": 9.877338839373032e-06,
385
+ "loss": 0.3888,
386
+ "step": 63
387
+ },
388
+ {
389
+ "epoch": 0.33,
390
+ "learning_rate": 9.870995413367397e-06,
391
+ "loss": 0.4585,
392
+ "step": 64
393
+ },
394
+ {
395
+ "epoch": 0.34,
396
+ "learning_rate": 9.864494212380125e-06,
397
+ "loss": 0.4716,
398
+ "step": 65
399
+ },
400
+ {
401
+ "epoch": 0.34,
402
+ "learning_rate": 9.857835446989708e-06,
403
+ "loss": 0.444,
404
+ "step": 66
405
+ },
406
+ {
407
+ "epoch": 0.35,
408
+ "learning_rate": 9.851019332878261e-06,
409
+ "loss": 0.4093,
410
+ "step": 67
411
+ },
412
+ {
413
+ "epoch": 0.35,
414
+ "learning_rate": 9.844046090824533e-06,
415
+ "loss": 0.4385,
416
+ "step": 68
417
+ },
418
+ {
419
+ "epoch": 0.36,
420
+ "learning_rate": 9.83691594669676e-06,
421
+ "loss": 0.446,
422
+ "step": 69
423
+ },
424
+ {
425
+ "epoch": 0.36,
426
+ "learning_rate": 9.829629131445342e-06,
427
+ "loss": 0.4389,
428
+ "step": 70
429
+ },
430
+ {
431
+ "epoch": 0.37,
432
+ "learning_rate": 9.822185881095376e-06,
433
+ "loss": 0.5123,
434
+ "step": 71
435
+ },
436
+ {
437
+ "epoch": 0.38,
438
+ "learning_rate": 9.814586436738998e-06,
439
+ "loss": 0.4392,
440
+ "step": 72
441
+ },
442
+ {
443
+ "epoch": 0.38,
444
+ "learning_rate": 9.806831044527574e-06,
445
+ "loss": 0.4739,
446
+ "step": 73
447
+ },
448
+ {
449
+ "epoch": 0.39,
450
+ "learning_rate": 9.798919955663738e-06,
451
+ "loss": 0.4497,
452
+ "step": 74
453
+ },
454
+ {
455
+ "epoch": 0.39,
456
+ "learning_rate": 9.790853426393246e-06,
457
+ "loss": 0.4983,
458
+ "step": 75
459
+ },
460
+ {
461
+ "epoch": 0.4,
462
+ "learning_rate": 9.782631717996675e-06,
463
+ "loss": 0.5268,
464
+ "step": 76
465
+ },
466
+ {
467
+ "epoch": 0.4,
468
+ "learning_rate": 9.774255096780969e-06,
469
+ "loss": 0.4357,
470
+ "step": 77
471
+ },
472
+ {
473
+ "epoch": 0.41,
474
+ "learning_rate": 9.765723834070805e-06,
475
+ "loss": 0.3865,
476
+ "step": 78
477
+ },
478
+ {
479
+ "epoch": 0.41,
480
+ "learning_rate": 9.757038206199807e-06,
481
+ "loss": 0.4707,
482
+ "step": 79
483
+ },
484
+ {
485
+ "epoch": 0.42,
486
+ "learning_rate": 9.748198494501598e-06,
487
+ "loss": 0.3794,
488
+ "step": 80
489
+ },
490
+ {
491
+ "epoch": 0.42,
492
+ "learning_rate": 9.73920498530068e-06,
493
+ "loss": 0.4031,
494
+ "step": 81
495
+ },
496
+ {
497
+ "epoch": 0.43,
498
+ "learning_rate": 9.73005796990317e-06,
499
+ "loss": 0.466,
500
+ "step": 82
501
+ },
502
+ {
503
+ "epoch": 0.43,
504
+ "learning_rate": 9.720757744587354e-06,
505
+ "loss": 0.438,
506
+ "step": 83
507
+ },
508
+ {
509
+ "epoch": 0.44,
510
+ "learning_rate": 9.711304610594104e-06,
511
+ "loss": 0.4813,
512
+ "step": 84
513
+ },
514
+ {
515
+ "epoch": 0.44,
516
+ "learning_rate": 9.7016988741171e-06,
517
+ "loss": 0.4782,
518
+ "step": 85
519
+ },
520
+ {
521
+ "epoch": 0.45,
522
+ "learning_rate": 9.691940846292936e-06,
523
+ "loss": 0.4512,
524
+ "step": 86
525
+ },
526
+ {
527
+ "epoch": 0.45,
528
+ "learning_rate": 9.682030843191021e-06,
529
+ "loss": 0.3891,
530
+ "step": 87
531
+ },
532
+ {
533
+ "epoch": 0.46,
534
+ "learning_rate": 9.671969185803357e-06,
535
+ "loss": 0.3776,
536
+ "step": 88
537
+ },
538
+ {
539
+ "epoch": 0.46,
540
+ "learning_rate": 9.661756200034131e-06,
541
+ "loss": 0.3567,
542
+ "step": 89
543
+ },
544
+ {
545
+ "epoch": 0.47,
546
+ "learning_rate": 9.651392216689167e-06,
547
+ "loss": 0.485,
548
+ "step": 90
549
+ },
550
+ {
551
+ "epoch": 0.47,
552
+ "learning_rate": 9.640877571465204e-06,
553
+ "loss": 0.3875,
554
+ "step": 91
555
+ },
556
+ {
557
+ "epoch": 0.48,
558
+ "learning_rate": 9.630212604939026e-06,
559
+ "loss": 0.3931,
560
+ "step": 92
561
+ },
562
+ {
563
+ "epoch": 0.48,
564
+ "learning_rate": 9.619397662556434e-06,
565
+ "loss": 0.3597,
566
+ "step": 93
567
+ },
568
+ {
569
+ "epoch": 0.49,
570
+ "learning_rate": 9.608433094621047e-06,
571
+ "loss": 0.4372,
572
+ "step": 94
573
+ },
574
+ {
575
+ "epoch": 0.49,
576
+ "learning_rate": 9.597319256282968e-06,
577
+ "loss": 0.4184,
578
+ "step": 95
579
+ },
580
+ {
581
+ "epoch": 0.5,
582
+ "learning_rate": 9.586056507527266e-06,
583
+ "loss": 0.4245,
584
+ "step": 96
585
+ },
586
+ {
587
+ "epoch": 0.51,
588
+ "learning_rate": 9.574645213162329e-06,
589
+ "loss": 0.451,
590
+ "step": 97
591
+ },
592
+ {
593
+ "epoch": 0.51,
594
+ "learning_rate": 9.56308574280804e-06,
595
+ "loss": 0.4343,
596
+ "step": 98
597
+ },
598
+ {
599
+ "epoch": 0.52,
600
+ "learning_rate": 9.551378470883813e-06,
601
+ "loss": 0.5133,
602
+ "step": 99
603
+ },
604
+ {
605
+ "epoch": 0.52,
606
+ "learning_rate": 9.539523776596446e-06,
607
+ "loss": 0.4918,
608
+ "step": 100
609
+ },
610
+ {
611
+ "epoch": 0.53,
612
+ "learning_rate": 9.527522043927864e-06,
613
+ "loss": 0.4277,
614
+ "step": 101
615
+ },
616
+ {
617
+ "epoch": 0.53,
618
+ "learning_rate": 9.515373661622665e-06,
619
+ "loss": 0.4445,
620
+ "step": 102
621
+ },
622
+ {
623
+ "epoch": 0.54,
624
+ "learning_rate": 9.50307902317553e-06,
625
+ "loss": 0.41,
626
+ "step": 103
627
+ },
628
+ {
629
+ "epoch": 0.54,
630
+ "learning_rate": 9.490638526818482e-06,
631
+ "loss": 0.4083,
632
+ "step": 104
633
+ },
634
+ {
635
+ "epoch": 0.55,
636
+ "learning_rate": 9.478052575507983e-06,
637
+ "loss": 0.5396,
638
+ "step": 105
639
+ },
640
+ {
641
+ "epoch": 0.55,
642
+ "learning_rate": 9.465321576911889e-06,
643
+ "loss": 0.4625,
644
+ "step": 106
645
+ },
646
+ {
647
+ "epoch": 0.56,
648
+ "learning_rate": 9.452445943396233e-06,
649
+ "loss": 0.3989,
650
+ "step": 107
651
+ },
652
+ {
653
+ "epoch": 0.56,
654
+ "learning_rate": 9.439426092011877e-06,
655
+ "loss": 0.3583,
656
+ "step": 108
657
+ },
658
+ {
659
+ "epoch": 0.57,
660
+ "learning_rate": 9.426262444481004e-06,
661
+ "loss": 0.4445,
662
+ "step": 109
663
+ },
664
+ {
665
+ "epoch": 0.57,
666
+ "learning_rate": 9.412955427183457e-06,
667
+ "loss": 0.3978,
668
+ "step": 110
669
+ },
670
+ {
671
+ "epoch": 0.58,
672
+ "learning_rate": 9.39950547114292e-06,
673
+ "loss": 0.3654,
674
+ "step": 111
675
+ },
676
+ {
677
+ "epoch": 0.58,
678
+ "learning_rate": 9.385913012012972e-06,
679
+ "loss": 0.4874,
680
+ "step": 112
681
+ },
682
+ {
683
+ "epoch": 0.59,
684
+ "learning_rate": 9.372178490062961e-06,
685
+ "loss": 0.3056,
686
+ "step": 113
687
+ },
688
+ {
689
+ "epoch": 0.59,
690
+ "learning_rate": 9.358302350163758e-06,
691
+ "loss": 0.3603,
692
+ "step": 114
693
+ },
694
+ {
695
+ "epoch": 0.6,
696
+ "learning_rate": 9.344285041773329e-06,
697
+ "loss": 0.3776,
698
+ "step": 115
699
+ },
700
+ {
701
+ "epoch": 0.6,
702
+ "learning_rate": 9.330127018922195e-06,
703
+ "loss": 0.4359,
704
+ "step": 116
705
+ },
706
+ {
707
+ "epoch": 0.61,
708
+ "learning_rate": 9.315828740198714e-06,
709
+ "loss": 0.4142,
710
+ "step": 117
711
+ },
712
+ {
713
+ "epoch": 0.61,
714
+ "learning_rate": 9.301390668734236e-06,
715
+ "loss": 0.3697,
716
+ "step": 118
717
+ },
718
+ {
719
+ "epoch": 0.62,
720
+ "learning_rate": 9.28681327218809e-06,
721
+ "loss": 0.529,
722
+ "step": 119
723
+ },
724
+ {
725
+ "epoch": 0.62,
726
+ "learning_rate": 9.272097022732444e-06,
727
+ "loss": 0.4071,
728
+ "step": 120
729
+ },
730
+ {
731
+ "epoch": 0.63,
732
+ "learning_rate": 9.257242397037014e-06,
733
+ "loss": 0.4541,
734
+ "step": 121
735
+ },
736
+ {
737
+ "epoch": 0.64,
738
+ "learning_rate": 9.242249876253617e-06,
739
+ "loss": 0.4562,
740
+ "step": 122
741
+ },
742
+ {
743
+ "epoch": 0.64,
744
+ "learning_rate": 9.22711994600059e-06,
745
+ "loss": 0.3675,
746
+ "step": 123
747
+ },
748
+ {
749
+ "epoch": 0.65,
750
+ "learning_rate": 9.211853096347059e-06,
751
+ "loss": 0.4719,
752
+ "step": 124
753
+ },
754
+ {
755
+ "epoch": 0.65,
756
+ "learning_rate": 9.196449821797067e-06,
757
+ "loss": 0.4509,
758
+ "step": 125
759
+ },
760
+ {
761
+ "epoch": 0.66,
762
+ "learning_rate": 9.180910621273555e-06,
763
+ "loss": 0.4665,
764
+ "step": 126
765
+ },
766
+ {
767
+ "epoch": 0.66,
768
+ "learning_rate": 9.165235998102204e-06,
769
+ "loss": 0.3802,
770
+ "step": 127
771
+ },
772
+ {
773
+ "epoch": 0.67,
774
+ "learning_rate": 9.149426459995127e-06,
775
+ "loss": 0.4071,
776
+ "step": 128
777
+ },
778
+ {
779
+ "epoch": 0.67,
780
+ "learning_rate": 9.133482519034428e-06,
781
+ "loss": 0.4573,
782
+ "step": 129
783
+ },
784
+ {
785
+ "epoch": 0.68,
786
+ "learning_rate": 9.11740469165562e-06,
787
+ "loss": 0.3656,
788
+ "step": 130
789
+ },
790
+ {
791
+ "epoch": 0.68,
792
+ "learning_rate": 9.101193498630886e-06,
793
+ "loss": 0.4184,
794
+ "step": 131
795
+ },
796
+ {
797
+ "epoch": 0.69,
798
+ "learning_rate": 9.08484946505221e-06,
799
+ "loss": 0.4245,
800
+ "step": 132
801
+ },
802
+ {
803
+ "epoch": 0.69,
804
+ "learning_rate": 9.068373120314392e-06,
805
+ "loss": 0.4423,
806
+ "step": 133
807
+ },
808
+ {
809
+ "epoch": 0.7,
810
+ "learning_rate": 9.05176499809787e-06,
811
+ "loss": 0.4013,
812
+ "step": 134
813
+ },
814
+ {
815
+ "epoch": 0.7,
816
+ "learning_rate": 9.035025636351453e-06,
817
+ "loss": 0.3466,
818
+ "step": 135
819
+ },
820
+ {
821
+ "epoch": 0.71,
822
+ "learning_rate": 9.018155577274891e-06,
823
+ "loss": 0.3971,
824
+ "step": 136
825
+ },
826
+ {
827
+ "epoch": 0.71,
828
+ "learning_rate": 9.001155367301312e-06,
829
+ "loss": 0.4159,
830
+ "step": 137
831
+ },
832
+ {
833
+ "epoch": 0.72,
834
+ "learning_rate": 8.984025557079523e-06,
835
+ "loss": 0.4659,
836
+ "step": 138
837
+ },
838
+ {
839
+ "epoch": 0.72,
840
+ "learning_rate": 8.966766701456177e-06,
841
+ "loss": 0.3389,
842
+ "step": 139
843
+ },
844
+ {
845
+ "epoch": 0.73,
846
+ "learning_rate": 8.949379359457795e-06,
847
+ "loss": 0.4077,
848
+ "step": 140
849
+ },
850
+ {
851
+ "epoch": 0.73,
852
+ "learning_rate": 8.931864094272663e-06,
853
+ "loss": 0.3795,
854
+ "step": 141
855
+ },
856
+ {
857
+ "epoch": 0.74,
858
+ "learning_rate": 8.914221473232594e-06,
859
+ "loss": 0.3625,
860
+ "step": 142
861
+ },
862
+ {
863
+ "epoch": 0.74,
864
+ "learning_rate": 8.896452067794542e-06,
865
+ "loss": 0.3363,
866
+ "step": 143
867
+ },
868
+ {
869
+ "epoch": 0.75,
870
+ "learning_rate": 8.8785564535221e-06,
871
+ "loss": 0.3743,
872
+ "step": 144
873
+ },
874
+ {
875
+ "epoch": 0.76,
876
+ "learning_rate": 8.860535210066851e-06,
877
+ "loss": 0.4334,
878
+ "step": 145
879
+ },
880
+ {
881
+ "epoch": 0.76,
882
+ "learning_rate": 8.842388921149603e-06,
883
+ "loss": 0.3556,
884
+ "step": 146
885
+ },
886
+ {
887
+ "epoch": 0.77,
888
+ "learning_rate": 8.824118174541464e-06,
889
+ "loss": 0.3977,
890
+ "step": 147
891
+ },
892
+ {
893
+ "epoch": 0.77,
894
+ "learning_rate": 8.805723562044825e-06,
895
+ "loss": 0.4037,
896
+ "step": 148
897
+ },
898
+ {
899
+ "epoch": 0.78,
900
+ "learning_rate": 8.787205679474174e-06,
901
+ "loss": 0.4265,
902
+ "step": 149
903
+ },
904
+ {
905
+ "epoch": 0.78,
906
+ "learning_rate": 8.768565126636806e-06,
907
+ "loss": 0.4058,
908
+ "step": 150
909
+ },
910
+ {
911
+ "epoch": 0.79,
912
+ "learning_rate": 8.749802507313393e-06,
913
+ "loss": 0.3564,
914
+ "step": 151
915
+ },
916
+ {
917
+ "epoch": 0.79,
918
+ "learning_rate": 8.730918429238429e-06,
919
+ "loss": 0.3238,
920
+ "step": 152
921
+ },
922
+ {
923
+ "epoch": 0.8,
924
+ "learning_rate": 8.711913504080534e-06,
925
+ "loss": 0.4479,
926
+ "step": 153
927
+ },
928
+ {
929
+ "epoch": 0.8,
930
+ "learning_rate": 8.692788347422662e-06,
931
+ "loss": 0.4177,
932
+ "step": 154
933
+ },
934
+ {
935
+ "epoch": 0.81,
936
+ "learning_rate": 8.673543578742141e-06,
937
+ "loss": 0.4248,
938
+ "step": 155
939
+ },
940
+ {
941
+ "epoch": 0.81,
942
+ "learning_rate": 8.65417982139062e-06,
943
+ "loss": 0.491,
944
+ "step": 156
945
+ },
946
+ {
947
+ "epoch": 0.82,
948
+ "learning_rate": 8.63469770257388e-06,
949
+ "loss": 0.3718,
950
+ "step": 157
951
+ },
952
+ {
953
+ "epoch": 0.82,
954
+ "learning_rate": 8.615097853331505e-06,
955
+ "loss": 0.3699,
956
+ "step": 158
957
+ },
958
+ {
959
+ "epoch": 0.83,
960
+ "learning_rate": 8.595380908516454e-06,
961
+ "loss": 0.4468,
962
+ "step": 159
963
+ },
964
+ {
965
+ "epoch": 0.83,
966
+ "learning_rate": 8.575547506774498e-06,
967
+ "loss": 0.3366,
968
+ "step": 160
969
+ },
970
+ {
971
+ "epoch": 0.84,
972
+ "learning_rate": 8.555598290523525e-06,
973
+ "loss": 0.4067,
974
+ "step": 161
975
+ },
976
+ {
977
+ "epoch": 0.84,
978
+ "learning_rate": 8.535533905932739e-06,
979
+ "loss": 0.366,
980
+ "step": 162
981
+ },
982
+ {
983
+ "epoch": 0.85,
984
+ "learning_rate": 8.515355002901727e-06,
985
+ "loss": 0.3512,
986
+ "step": 163
987
+ },
988
+ {
989
+ "epoch": 0.85,
990
+ "learning_rate": 8.49506223503941e-06,
991
+ "loss": 0.3967,
992
+ "step": 164
993
+ },
994
+ {
995
+ "epoch": 0.86,
996
+ "learning_rate": 8.474656259642874e-06,
997
+ "loss": 0.4167,
998
+ "step": 165
999
+ },
1000
+ {
1001
+ "epoch": 0.86,
1002
+ "learning_rate": 8.45413773767607e-06,
1003
+ "loss": 0.295,
1004
+ "step": 166
1005
+ },
1006
+ {
1007
+ "epoch": 0.87,
1008
+ "learning_rate": 8.433507333748419e-06,
1009
+ "loss": 0.4049,
1010
+ "step": 167
1011
+ },
1012
+ {
1013
+ "epoch": 0.88,
1014
+ "learning_rate": 8.412765716093273e-06,
1015
+ "loss": 0.4096,
1016
+ "step": 168
1017
+ },
1018
+ {
1019
+ "epoch": 0.88,
1020
+ "learning_rate": 8.391913556546273e-06,
1021
+ "loss": 0.2775,
1022
+ "step": 169
1023
+ },
1024
+ {
1025
+ "epoch": 0.89,
1026
+ "learning_rate": 8.370951530523602e-06,
1027
+ "loss": 0.3666,
1028
+ "step": 170
1029
+ },
1030
+ {
1031
+ "epoch": 0.89,
1032
+ "learning_rate": 8.349880317000083e-06,
1033
+ "loss": 0.4301,
1034
+ "step": 171
1035
+ },
1036
+ {
1037
+ "epoch": 0.9,
1038
+ "learning_rate": 8.328700598487203e-06,
1039
+ "loss": 0.4707,
1040
+ "step": 172
1041
+ },
1042
+ {
1043
+ "epoch": 0.9,
1044
+ "learning_rate": 8.307413061011007e-06,
1045
+ "loss": 0.3716,
1046
+ "step": 173
1047
+ },
1048
+ {
1049
+ "epoch": 0.91,
1050
+ "learning_rate": 8.286018394089864e-06,
1051
+ "loss": 0.3055,
1052
+ "step": 174
1053
+ },
1054
+ {
1055
+ "epoch": 0.91,
1056
+ "learning_rate": 8.264517290712146e-06,
1057
+ "loss": 0.399,
1058
+ "step": 175
1059
+ },
1060
+ {
1061
+ "epoch": 0.92,
1062
+ "learning_rate": 8.24291044731378e-06,
1063
+ "loss": 0.4073,
1064
+ "step": 176
1065
+ },
1066
+ {
1067
+ "epoch": 0.92,
1068
+ "learning_rate": 8.221198563755683e-06,
1069
+ "loss": 0.3961,
1070
+ "step": 177
1071
+ },
1072
+ {
1073
+ "epoch": 0.93,
1074
+ "learning_rate": 8.199382343301094e-06,
1075
+ "loss": 0.3826,
1076
+ "step": 178
1077
+ },
1078
+ {
1079
+ "epoch": 0.93,
1080
+ "learning_rate": 8.177462492592807e-06,
1081
+ "loss": 0.4113,
1082
+ "step": 179
1083
+ },
1084
+ {
1085
+ "epoch": 0.94,
1086
+ "learning_rate": 8.155439721630265e-06,
1087
+ "loss": 0.3691,
1088
+ "step": 180
1089
+ },
1090
+ {
1091
+ "epoch": 0.94,
1092
+ "learning_rate": 8.133314743746572e-06,
1093
+ "loss": 0.4212,
1094
+ "step": 181
1095
+ },
1096
+ {
1097
+ "epoch": 0.95,
1098
+ "learning_rate": 8.11108827558539e-06,
1099
+ "loss": 0.4468,
1100
+ "step": 182
1101
+ },
1102
+ {
1103
+ "epoch": 0.95,
1104
+ "learning_rate": 8.088761037077718e-06,
1105
+ "loss": 0.3119,
1106
+ "step": 183
1107
+ },
1108
+ {
1109
+ "epoch": 0.96,
1110
+ "learning_rate": 8.066333751418582e-06,
1111
+ "loss": 0.2805,
1112
+ "step": 184
1113
+ },
1114
+ {
1115
+ "epoch": 0.96,
1116
+ "learning_rate": 8.043807145043604e-06,
1117
+ "loss": 0.3691,
1118
+ "step": 185
1119
+ },
1120
+ {
1121
+ "epoch": 0.97,
1122
+ "learning_rate": 8.021181947605474e-06,
1123
+ "loss": 0.3757,
1124
+ "step": 186
1125
+ },
1126
+ {
1127
+ "epoch": 0.97,
1128
+ "learning_rate": 7.998458891950317e-06,
1129
+ "loss": 0.3971,
1130
+ "step": 187
1131
+ },
1132
+ {
1133
+ "epoch": 0.98,
1134
+ "learning_rate": 7.97563871409395e-06,
1135
+ "loss": 0.3847,
1136
+ "step": 188
1137
+ },
1138
+ {
1139
+ "epoch": 0.98,
1140
+ "learning_rate": 7.952722153198054e-06,
1141
+ "loss": 0.3331,
1142
+ "step": 189
1143
+ },
1144
+ {
1145
+ "epoch": 0.99,
1146
+ "learning_rate": 7.929709951546224e-06,
1147
+ "loss": 0.4079,
1148
+ "step": 190
1149
+ },
1150
+ {
1151
+ "epoch": 0.99,
1152
+ "learning_rate": 7.906602854519921e-06,
1153
+ "loss": 0.463,
1154
+ "step": 191
1155
+ },
1156
+ {
1157
+ "epoch": 1.0,
1158
+ "learning_rate": 7.883401610574338e-06,
1159
+ "loss": 0.2378,
1160
+ "step": 192
1161
+ },
1162
+ {
1163
+ "epoch": 1.01,
1164
+ "learning_rate": 7.86010697121415e-06,
1165
+ "loss": 0.2147,
1166
+ "step": 193
1167
+ },
1168
+ {
1169
+ "epoch": 1.01,
1170
+ "learning_rate": 7.836719690969183e-06,
1171
+ "loss": 0.3056,
1172
+ "step": 194
1173
+ },
1174
+ {
1175
+ "epoch": 1.02,
1176
+ "learning_rate": 7.813240527369958e-06,
1177
+ "loss": 0.2191,
1178
+ "step": 195
1179
+ },
1180
+ {
1181
+ "epoch": 1.02,
1182
+ "learning_rate": 7.789670240923169e-06,
1183
+ "loss": 0.1942,
1184
+ "step": 196
1185
+ },
1186
+ {
1187
+ "epoch": 1.03,
1188
+ "learning_rate": 7.766009595087037e-06,
1189
+ "loss": 0.221,
1190
+ "step": 197
1191
+ },
1192
+ {
1193
+ "epoch": 1.03,
1194
+ "learning_rate": 7.742259356246594e-06,
1195
+ "loss": 0.2422,
1196
+ "step": 198
1197
+ },
1198
+ {
1199
+ "epoch": 1.04,
1200
+ "learning_rate": 7.71842029368885e-06,
1201
+ "loss": 0.2253,
1202
+ "step": 199
1203
+ },
1204
+ {
1205
+ "epoch": 1.04,
1206
+ "learning_rate": 7.69449317957788e-06,
1207
+ "loss": 0.2009,
1208
+ "step": 200
1209
+ },
1210
+ {
1211
+ "epoch": 1.05,
1212
+ "learning_rate": 7.670478788929803e-06,
1213
+ "loss": 0.231,
1214
+ "step": 201
1215
+ },
1216
+ {
1217
+ "epoch": 1.05,
1218
+ "learning_rate": 7.646377899587695e-06,
1219
+ "loss": 0.2143,
1220
+ "step": 202
1221
+ },
1222
+ {
1223
+ "epoch": 1.06,
1224
+ "learning_rate": 7.622191292196386e-06,
1225
+ "loss": 0.2713,
1226
+ "step": 203
1227
+ },
1228
+ {
1229
+ "epoch": 1.06,
1230
+ "learning_rate": 7.597919750177168e-06,
1231
+ "loss": 0.2116,
1232
+ "step": 204
1233
+ },
1234
+ {
1235
+ "epoch": 1.07,
1236
+ "learning_rate": 7.573564059702432e-06,
1237
+ "loss": 0.2123,
1238
+ "step": 205
1239
+ },
1240
+ {
1241
+ "epoch": 1.07,
1242
+ "learning_rate": 7.549125009670193e-06,
1243
+ "loss": 0.2131,
1244
+ "step": 206
1245
+ },
1246
+ {
1247
+ "epoch": 1.08,
1248
+ "learning_rate": 7.524603391678541e-06,
1249
+ "loss": 0.2569,
1250
+ "step": 207
1251
+ },
1252
+ {
1253
+ "epoch": 1.08,
1254
+ "learning_rate": 7.500000000000001e-06,
1255
+ "loss": 0.26,
1256
+ "step": 208
1257
+ },
1258
+ {
1259
+ "epoch": 1.09,
1260
+ "learning_rate": 7.475315631555808e-06,
1261
+ "loss": 0.2613,
1262
+ "step": 209
1263
+ },
1264
+ {
1265
+ "epoch": 1.09,
1266
+ "learning_rate": 7.450551085890087e-06,
1267
+ "loss": 0.2455,
1268
+ "step": 210
1269
+ },
1270
+ {
1271
+ "epoch": 1.1,
1272
+ "learning_rate": 7.425707165143965e-06,
1273
+ "loss": 0.2206,
1274
+ "step": 211
1275
+ },
1276
+ {
1277
+ "epoch": 1.1,
1278
+ "learning_rate": 7.400784674029579e-06,
1279
+ "loss": 0.2643,
1280
+ "step": 212
1281
+ },
1282
+ {
1283
+ "epoch": 1.11,
1284
+ "learning_rate": 7.375784419804018e-06,
1285
+ "loss": 0.2097,
1286
+ "step": 213
1287
+ },
1288
+ {
1289
+ "epoch": 1.11,
1290
+ "learning_rate": 7.3507072122431765e-06,
1291
+ "loss": 0.2464,
1292
+ "step": 214
1293
+ },
1294
+ {
1295
+ "epoch": 1.12,
1296
+ "learning_rate": 7.325553863615516e-06,
1297
+ "loss": 0.2359,
1298
+ "step": 215
1299
+ },
1300
+ {
1301
+ "epoch": 1.12,
1302
+ "learning_rate": 7.300325188655762e-06,
1303
+ "loss": 0.2527,
1304
+ "step": 216
1305
+ },
1306
+ {
1307
+ "epoch": 1.13,
1308
+ "learning_rate": 7.275022004538515e-06,
1309
+ "loss": 0.2187,
1310
+ "step": 217
1311
+ },
1312
+ {
1313
+ "epoch": 1.14,
1314
+ "learning_rate": 7.249645130851782e-06,
1315
+ "loss": 0.2043,
1316
+ "step": 218
1317
+ },
1318
+ {
1319
+ "epoch": 1.14,
1320
+ "learning_rate": 7.224195389570422e-06,
1321
+ "loss": 0.2255,
1322
+ "step": 219
1323
+ },
1324
+ {
1325
+ "epoch": 1.15,
1326
+ "learning_rate": 7.198673605029529e-06,
1327
+ "loss": 0.2796,
1328
+ "step": 220
1329
+ },
1330
+ {
1331
+ "epoch": 1.15,
1332
+ "learning_rate": 7.173080603897732e-06,
1333
+ "loss": 0.1442,
1334
+ "step": 221
1335
+ },
1336
+ {
1337
+ "epoch": 1.16,
1338
+ "learning_rate": 7.147417215150411e-06,
1339
+ "loss": 0.2157,
1340
+ "step": 222
1341
+ },
1342
+ {
1343
+ "epoch": 1.16,
1344
+ "learning_rate": 7.121684270042851e-06,
1345
+ "loss": 0.237,
1346
+ "step": 223
1347
+ },
1348
+ {
1349
+ "epoch": 1.17,
1350
+ "learning_rate": 7.095882602083321e-06,
1351
+ "loss": 0.1775,
1352
+ "step": 224
1353
+ },
1354
+ {
1355
+ "epoch": 1.17,
1356
+ "learning_rate": 7.070013047006068e-06,
1357
+ "loss": 0.2371,
1358
+ "step": 225
1359
+ },
1360
+ {
1361
+ "epoch": 1.18,
1362
+ "learning_rate": 7.044076442744252e-06,
1363
+ "loss": 0.1903,
1364
+ "step": 226
1365
+ },
1366
+ {
1367
+ "epoch": 1.18,
1368
+ "learning_rate": 7.018073629402802e-06,
1369
+ "loss": 0.235,
1370
+ "step": 227
1371
+ },
1372
+ {
1373
+ "epoch": 1.19,
1374
+ "learning_rate": 6.9920054492312086e-06,
1375
+ "loss": 0.242,
1376
+ "step": 228
1377
+ },
1378
+ {
1379
+ "epoch": 1.19,
1380
+ "learning_rate": 6.965872746596236e-06,
1381
+ "loss": 0.2306,
1382
+ "step": 229
1383
+ },
1384
+ {
1385
+ "epoch": 1.2,
1386
+ "learning_rate": 6.939676367954582e-06,
1387
+ "loss": 0.187,
1388
+ "step": 230
1389
+ },
1390
+ {
1391
+ "epoch": 1.2,
1392
+ "learning_rate": 6.913417161825449e-06,
1393
+ "loss": 0.149,
1394
+ "step": 231
1395
+ },
1396
+ {
1397
+ "epoch": 1.21,
1398
+ "learning_rate": 6.887095978763072e-06,
1399
+ "loss": 0.2301,
1400
+ "step": 232
1401
+ },
1402
+ {
1403
+ "epoch": 1.21,
1404
+ "learning_rate": 6.860713671329161e-06,
1405
+ "loss": 0.1915,
1406
+ "step": 233
1407
+ },
1408
+ {
1409
+ "epoch": 1.22,
1410
+ "learning_rate": 6.834271094065284e-06,
1411
+ "loss": 0.2224,
1412
+ "step": 234
1413
+ },
1414
+ {
1415
+ "epoch": 1.22,
1416
+ "learning_rate": 6.8077691034651936e-06,
1417
+ "loss": 0.1945,
1418
+ "step": 235
1419
+ },
1420
+ {
1421
+ "epoch": 1.23,
1422
+ "learning_rate": 6.781208557947085e-06,
1423
+ "loss": 0.2624,
1424
+ "step": 236
1425
+ },
1426
+ {
1427
+ "epoch": 1.23,
1428
+ "learning_rate": 6.754590317825785e-06,
1429
+ "loss": 0.2425,
1430
+ "step": 237
1431
+ },
1432
+ {
1433
+ "epoch": 1.24,
1434
+ "learning_rate": 6.727915245284891e-06,
1435
+ "loss": 0.2268,
1436
+ "step": 238
1437
+ },
1438
+ {
1439
+ "epoch": 1.24,
1440
+ "learning_rate": 6.7011842043488405e-06,
1441
+ "loss": 0.2312,
1442
+ "step": 239
1443
+ },
1444
+ {
1445
+ "epoch": 1.25,
1446
+ "learning_rate": 6.674398060854931e-06,
1447
+ "loss": 0.2165,
1448
+ "step": 240
1449
+ },
1450
+ {
1451
+ "epoch": 1.26,
1452
+ "learning_rate": 6.647557682425267e-06,
1453
+ "loss": 0.2298,
1454
+ "step": 241
1455
+ },
1456
+ {
1457
+ "epoch": 1.26,
1458
+ "learning_rate": 6.620663938438664e-06,
1459
+ "loss": 0.1871,
1460
+ "step": 242
1461
+ },
1462
+ {
1463
+ "epoch": 1.27,
1464
+ "learning_rate": 6.59371770000248e-06,
1465
+ "loss": 0.1738,
1466
+ "step": 243
1467
+ },
1468
+ {
1469
+ "epoch": 1.27,
1470
+ "learning_rate": 6.566719839924412e-06,
1471
+ "loss": 0.2292,
1472
+ "step": 244
1473
+ },
1474
+ {
1475
+ "epoch": 1.28,
1476
+ "learning_rate": 6.539671232684215e-06,
1477
+ "loss": 0.2016,
1478
+ "step": 245
1479
+ },
1480
+ {
1481
+ "epoch": 1.28,
1482
+ "learning_rate": 6.51257275440538e-06,
1483
+ "loss": 0.2075,
1484
+ "step": 246
1485
+ },
1486
+ {
1487
+ "epoch": 1.29,
1488
+ "learning_rate": 6.485425282826757e-06,
1489
+ "loss": 0.1901,
1490
+ "step": 247
1491
+ },
1492
+ {
1493
+ "epoch": 1.29,
1494
+ "learning_rate": 6.458229697274125e-06,
1495
+ "loss": 0.2148,
1496
+ "step": 248
1497
+ },
1498
+ {
1499
+ "epoch": 1.3,
1500
+ "learning_rate": 6.430986878631708e-06,
1501
+ "loss": 0.2336,
1502
+ "step": 249
1503
+ },
1504
+ {
1505
+ "epoch": 1.3,
1506
+ "learning_rate": 6.403697709313639e-06,
1507
+ "loss": 0.1997,
1508
+ "step": 250
1509
+ },
1510
+ {
1511
+ "epoch": 1.31,
1512
+ "learning_rate": 6.376363073235388e-06,
1513
+ "loss": 0.1798,
1514
+ "step": 251
1515
+ },
1516
+ {
1517
+ "epoch": 1.31,
1518
+ "learning_rate": 6.348983855785122e-06,
1519
+ "loss": 0.2341,
1520
+ "step": 252
1521
+ },
1522
+ {
1523
+ "epoch": 1.32,
1524
+ "learning_rate": 6.321560943795032e-06,
1525
+ "loss": 0.2797,
1526
+ "step": 253
1527
+ },
1528
+ {
1529
+ "epoch": 1.32,
1530
+ "learning_rate": 6.294095225512604e-06,
1531
+ "loss": 0.2282,
1532
+ "step": 254
1533
+ },
1534
+ {
1535
+ "epoch": 1.33,
1536
+ "learning_rate": 6.266587590571852e-06,
1537
+ "loss": 0.2132,
1538
+ "step": 255
1539
+ },
1540
+ {
1541
+ "epoch": 1.33,
1542
+ "learning_rate": 6.2390389299645e-06,
1543
+ "loss": 0.3393,
1544
+ "step": 256
1545
+ },
1546
+ {
1547
+ "epoch": 1.34,
1548
+ "learning_rate": 6.211450136011121e-06,
1549
+ "loss": 0.2429,
1550
+ "step": 257
1551
+ },
1552
+ {
1553
+ "epoch": 1.34,
1554
+ "learning_rate": 6.183822102332234e-06,
1555
+ "loss": 0.2086,
1556
+ "step": 258
1557
+ },
1558
+ {
1559
+ "epoch": 1.35,
1560
+ "learning_rate": 6.1561557238193655e-06,
1561
+ "loss": 0.1825,
1562
+ "step": 259
1563
+ },
1564
+ {
1565
+ "epoch": 1.35,
1566
+ "learning_rate": 6.128451896606054e-06,
1567
+ "loss": 0.1507,
1568
+ "step": 260
1569
+ },
1570
+ {
1571
+ "epoch": 1.36,
1572
+ "learning_rate": 6.100711518038828e-06,
1573
+ "loss": 0.2533,
1574
+ "step": 261
1575
+ },
1576
+ {
1577
+ "epoch": 1.36,
1578
+ "learning_rate": 6.072935486648144e-06,
1579
+ "loss": 0.1819,
1580
+ "step": 262
1581
+ },
1582
+ {
1583
+ "epoch": 1.37,
1584
+ "learning_rate": 6.045124702119274e-06,
1585
+ "loss": 0.1806,
1586
+ "step": 263
1587
+ },
1588
+ {
1589
+ "epoch": 1.38,
1590
+ "learning_rate": 6.0172800652631706e-06,
1591
+ "loss": 0.2453,
1592
+ "step": 264
1593
+ },
1594
+ {
1595
+ "epoch": 1.38,
1596
+ "learning_rate": 5.9894024779872865e-06,
1597
+ "loss": 0.2334,
1598
+ "step": 265
1599
+ },
1600
+ {
1601
+ "epoch": 1.39,
1602
+ "learning_rate": 5.961492843266363e-06,
1603
+ "loss": 0.2178,
1604
+ "step": 266
1605
+ },
1606
+ {
1607
+ "epoch": 1.39,
1608
+ "learning_rate": 5.933552065113182e-06,
1609
+ "loss": 0.1856,
1610
+ "step": 267
1611
+ },
1612
+ {
1613
+ "epoch": 1.4,
1614
+ "learning_rate": 5.905581048549279e-06,
1615
+ "loss": 0.2256,
1616
+ "step": 268
1617
+ },
1618
+ {
1619
+ "epoch": 1.4,
1620
+ "learning_rate": 5.877580699575638e-06,
1621
+ "loss": 0.1834,
1622
+ "step": 269
1623
+ },
1624
+ {
1625
+ "epoch": 1.41,
1626
+ "learning_rate": 5.849551925143334e-06,
1627
+ "loss": 0.1553,
1628
+ "step": 270
1629
+ },
1630
+ {
1631
+ "epoch": 1.41,
1632
+ "learning_rate": 5.821495633124169e-06,
1633
+ "loss": 0.1962,
1634
+ "step": 271
1635
+ },
1636
+ {
1637
+ "epoch": 1.42,
1638
+ "learning_rate": 5.793412732281258e-06,
1639
+ "loss": 0.1645,
1640
+ "step": 272
1641
+ },
1642
+ {
1643
+ "epoch": 1.42,
1644
+ "learning_rate": 5.76530413223959e-06,
1645
+ "loss": 0.1862,
1646
+ "step": 273
1647
+ },
1648
+ {
1649
+ "epoch": 1.43,
1650
+ "learning_rate": 5.737170743456573e-06,
1651
+ "loss": 0.127,
1652
+ "step": 274
1653
+ },
1654
+ {
1655
+ "epoch": 1.43,
1656
+ "learning_rate": 5.709013477192541e-06,
1657
+ "loss": 0.1874,
1658
+ "step": 275
1659
+ },
1660
+ {
1661
+ "epoch": 1.44,
1662
+ "learning_rate": 5.680833245481234e-06,
1663
+ "loss": 0.2084,
1664
+ "step": 276
1665
+ },
1666
+ {
1667
+ "epoch": 1.44,
1668
+ "learning_rate": 5.65263096110026e-06,
1669
+ "loss": 0.2198,
1670
+ "step": 277
1671
+ },
1672
+ {
1673
+ "epoch": 1.45,
1674
+ "learning_rate": 5.6244075375415255e-06,
1675
+ "loss": 0.187,
1676
+ "step": 278
1677
+ },
1678
+ {
1679
+ "epoch": 1.45,
1680
+ "learning_rate": 5.596163888981656e-06,
1681
+ "loss": 0.219,
1682
+ "step": 279
1683
+ },
1684
+ {
1685
+ "epoch": 1.46,
1686
+ "learning_rate": 5.567900930252375e-06,
1687
+ "loss": 0.1906,
1688
+ "step": 280
1689
+ },
1690
+ {
1691
+ "epoch": 1.46,
1692
+ "learning_rate": 5.539619576810877e-06,
1693
+ "loss": 0.2745,
1694
+ "step": 281
1695
+ },
1696
+ {
1697
+ "epoch": 1.47,
1698
+ "learning_rate": 5.511320744710171e-06,
1699
+ "loss": 0.1857,
1700
+ "step": 282
1701
+ },
1702
+ {
1703
+ "epoch": 1.47,
1704
+ "learning_rate": 5.4830053505694204e-06,
1705
+ "loss": 0.2473,
1706
+ "step": 283
1707
+ },
1708
+ {
1709
+ "epoch": 1.48,
1710
+ "learning_rate": 5.454674311544236e-06,
1711
+ "loss": 0.2235,
1712
+ "step": 284
1713
+ },
1714
+ {
1715
+ "epoch": 1.48,
1716
+ "learning_rate": 5.4263285452969805e-06,
1717
+ "loss": 0.2309,
1718
+ "step": 285
1719
+ },
1720
+ {
1721
+ "epoch": 1.49,
1722
+ "learning_rate": 5.397968969967044e-06,
1723
+ "loss": 0.1904,
1724
+ "step": 286
1725
+ },
1726
+ {
1727
+ "epoch": 1.49,
1728
+ "learning_rate": 5.3695965041411015e-06,
1729
+ "loss": 0.2391,
1730
+ "step": 287
1731
+ },
1732
+ {
1733
+ "epoch": 1.5,
1734
+ "learning_rate": 5.341212066823356e-06,
1735
+ "loss": 0.2283,
1736
+ "step": 288
1737
+ },
1738
+ {
1739
+ "epoch": 1.51,
1740
+ "learning_rate": 5.31281657740578e-06,
1741
+ "loss": 0.2984,
1742
+ "step": 289
1743
+ },
1744
+ {
1745
+ "epoch": 1.51,
1746
+ "learning_rate": 5.284410955638335e-06,
1747
+ "loss": 0.1973,
1748
+ "step": 290
1749
+ },
1750
+ {
1751
+ "epoch": 1.52,
1752
+ "learning_rate": 5.255996121599167e-06,
1753
+ "loss": 0.1753,
1754
+ "step": 291
1755
+ },
1756
+ {
1757
+ "epoch": 1.52,
1758
+ "learning_rate": 5.227572995664819e-06,
1759
+ "loss": 0.1709,
1760
+ "step": 292
1761
+ },
1762
+ {
1763
+ "epoch": 1.53,
1764
+ "learning_rate": 5.199142498480415e-06,
1765
+ "loss": 0.219,
1766
+ "step": 293
1767
+ },
1768
+ {
1769
+ "epoch": 1.53,
1770
+ "learning_rate": 5.17070555092984e-06,
1771
+ "loss": 0.1841,
1772
+ "step": 294
1773
+ },
1774
+ {
1775
+ "epoch": 1.54,
1776
+ "learning_rate": 5.1422630741059075e-06,
1777
+ "loss": 0.1877,
1778
+ "step": 295
1779
+ },
1780
+ {
1781
+ "epoch": 1.54,
1782
+ "learning_rate": 5.113815989280528e-06,
1783
+ "loss": 0.1924,
1784
+ "step": 296
1785
+ },
1786
+ {
1787
+ "epoch": 1.55,
1788
+ "learning_rate": 5.085365217874875e-06,
1789
+ "loss": 0.2146,
1790
+ "step": 297
1791
+ },
1792
+ {
1793
+ "epoch": 1.55,
1794
+ "learning_rate": 5.056911681429521e-06,
1795
+ "loss": 0.2247,
1796
+ "step": 298
1797
+ },
1798
+ {
1799
+ "epoch": 1.56,
1800
+ "learning_rate": 5.0284563015746144e-06,
1801
+ "loss": 0.2197,
1802
+ "step": 299
1803
+ },
1804
+ {
1805
+ "epoch": 1.56,
1806
+ "learning_rate": 5e-06,
1807
+ "loss": 0.1898,
1808
+ "step": 300
1809
+ },
1810
+ {
1811
+ "epoch": 1.57,
1812
+ "learning_rate": 4.971543698425386e-06,
1813
+ "loss": 0.254,
1814
+ "step": 301
1815
+ },
1816
+ {
1817
+ "epoch": 1.57,
1818
+ "learning_rate": 4.9430883185704796e-06,
1819
+ "loss": 0.2529,
1820
+ "step": 302
1821
+ },
1822
+ {
1823
+ "epoch": 1.58,
1824
+ "learning_rate": 4.914634782125127e-06,
1825
+ "loss": 0.2218,
1826
+ "step": 303
1827
+ },
1828
+ {
1829
+ "epoch": 1.58,
1830
+ "learning_rate": 4.886184010719472e-06,
1831
+ "loss": 0.2202,
1832
+ "step": 304
1833
+ },
1834
+ {
1835
+ "epoch": 1.59,
1836
+ "learning_rate": 4.857736925894093e-06,
1837
+ "loss": 0.2077,
1838
+ "step": 305
1839
+ },
1840
+ {
1841
+ "epoch": 1.59,
1842
+ "learning_rate": 4.829294449070161e-06,
1843
+ "loss": 0.2233,
1844
+ "step": 306
1845
+ },
1846
+ {
1847
+ "epoch": 1.6,
1848
+ "learning_rate": 4.800857501519587e-06,
1849
+ "loss": 0.2463,
1850
+ "step": 307
1851
+ },
1852
+ {
1853
+ "epoch": 1.6,
1854
+ "learning_rate": 4.772427004335183e-06,
1855
+ "loss": 0.1808,
1856
+ "step": 308
1857
+ },
1858
+ {
1859
+ "epoch": 1.61,
1860
+ "learning_rate": 4.744003878400836e-06,
1861
+ "loss": 0.2034,
1862
+ "step": 309
1863
+ },
1864
+ {
1865
+ "epoch": 1.61,
1866
+ "learning_rate": 4.715589044361667e-06,
1867
+ "loss": 0.1448,
1868
+ "step": 310
1869
+ },
1870
+ {
1871
+ "epoch": 1.62,
1872
+ "learning_rate": 4.687183422594221e-06,
1873
+ "loss": 0.2125,
1874
+ "step": 311
1875
+ },
1876
+ {
1877
+ "epoch": 1.62,
1878
+ "learning_rate": 4.6587879331766465e-06,
1879
+ "loss": 0.2391,
1880
+ "step": 312
1881
+ },
1882
+ {
1883
+ "epoch": 1.63,
1884
+ "learning_rate": 4.630403495858901e-06,
1885
+ "loss": 0.2339,
1886
+ "step": 313
1887
+ },
1888
+ {
1889
+ "epoch": 1.64,
1890
+ "learning_rate": 4.6020310300329575e-06,
1891
+ "loss": 0.1453,
1892
+ "step": 314
1893
+ },
1894
+ {
1895
+ "epoch": 1.64,
1896
+ "learning_rate": 4.57367145470302e-06,
1897
+ "loss": 0.2064,
1898
+ "step": 315
1899
+ },
1900
+ {
1901
+ "epoch": 1.65,
1902
+ "learning_rate": 4.545325688455766e-06,
1903
+ "loss": 0.2278,
1904
+ "step": 316
1905
+ },
1906
+ {
1907
+ "epoch": 1.65,
1908
+ "learning_rate": 4.516994649430581e-06,
1909
+ "loss": 0.1749,
1910
+ "step": 317
1911
+ },
1912
+ {
1913
+ "epoch": 1.66,
1914
+ "learning_rate": 4.488679255289829e-06,
1915
+ "loss": 0.2473,
1916
+ "step": 318
1917
+ },
1918
+ {
1919
+ "epoch": 1.66,
1920
+ "learning_rate": 4.460380423189124e-06,
1921
+ "loss": 0.1748,
1922
+ "step": 319
1923
+ },
1924
+ {
1925
+ "epoch": 1.67,
1926
+ "learning_rate": 4.432099069747625e-06,
1927
+ "loss": 0.2509,
1928
+ "step": 320
1929
+ },
1930
+ {
1931
+ "epoch": 1.67,
1932
+ "learning_rate": 4.403836111018346e-06,
1933
+ "loss": 0.212,
1934
+ "step": 321
1935
+ },
1936
+ {
1937
+ "epoch": 1.68,
1938
+ "learning_rate": 4.375592462458477e-06,
1939
+ "loss": 0.2655,
1940
+ "step": 322
1941
+ },
1942
+ {
1943
+ "epoch": 1.68,
1944
+ "learning_rate": 4.347369038899744e-06,
1945
+ "loss": 0.1895,
1946
+ "step": 323
1947
+ },
1948
+ {
1949
+ "epoch": 1.69,
1950
+ "learning_rate": 4.319166754518768e-06,
1951
+ "loss": 0.186,
1952
+ "step": 324
1953
+ },
1954
+ {
1955
+ "epoch": 1.69,
1956
+ "learning_rate": 4.29098652280746e-06,
1957
+ "loss": 0.2375,
1958
+ "step": 325
1959
+ },
1960
+ {
1961
+ "epoch": 1.7,
1962
+ "learning_rate": 4.262829256543429e-06,
1963
+ "loss": 0.1883,
1964
+ "step": 326
1965
+ },
1966
+ {
1967
+ "epoch": 1.7,
1968
+ "learning_rate": 4.234695867760412e-06,
1969
+ "loss": 0.1836,
1970
+ "step": 327
1971
+ },
1972
+ {
1973
+ "epoch": 1.71,
1974
+ "learning_rate": 4.206587267718743e-06,
1975
+ "loss": 0.2208,
1976
+ "step": 328
1977
+ },
1978
+ {
1979
+ "epoch": 1.71,
1980
+ "learning_rate": 4.178504366875832e-06,
1981
+ "loss": 0.217,
1982
+ "step": 329
1983
+ },
1984
+ {
1985
+ "epoch": 1.72,
1986
+ "learning_rate": 4.150448074856667e-06,
1987
+ "loss": 0.2423,
1988
+ "step": 330
1989
+ },
1990
+ {
1991
+ "epoch": 1.72,
1992
+ "learning_rate": 4.122419300424363e-06,
1993
+ "loss": 0.2313,
1994
+ "step": 331
1995
+ },
1996
+ {
1997
+ "epoch": 1.73,
1998
+ "learning_rate": 4.094418951450721e-06,
1999
+ "loss": 0.2213,
2000
+ "step": 332
2001
+ },
2002
+ {
2003
+ "epoch": 1.73,
2004
+ "learning_rate": 4.066447934886819e-06,
2005
+ "loss": 0.2091,
2006
+ "step": 333
2007
+ },
2008
+ {
2009
+ "epoch": 1.74,
2010
+ "learning_rate": 4.038507156733637e-06,
2011
+ "loss": 0.1929,
2012
+ "step": 334
2013
+ },
2014
+ {
2015
+ "epoch": 1.74,
2016
+ "learning_rate": 4.010597522012716e-06,
2017
+ "loss": 0.2606,
2018
+ "step": 335
2019
+ },
2020
+ {
2021
+ "epoch": 1.75,
2022
+ "learning_rate": 3.982719934736832e-06,
2023
+ "loss": 0.2008,
2024
+ "step": 336
2025
+ },
2026
+ {
2027
+ "epoch": 1.76,
2028
+ "learning_rate": 3.954875297880729e-06,
2029
+ "loss": 0.1968,
2030
+ "step": 337
2031
+ },
2032
+ {
2033
+ "epoch": 1.76,
2034
+ "learning_rate": 3.927064513351858e-06,
2035
+ "loss": 0.2177,
2036
+ "step": 338
2037
+ },
2038
+ {
2039
+ "epoch": 1.77,
2040
+ "learning_rate": 3.899288481961173e-06,
2041
+ "loss": 0.2031,
2042
+ "step": 339
2043
+ },
2044
+ {
2045
+ "epoch": 1.77,
2046
+ "learning_rate": 3.871548103393947e-06,
2047
+ "loss": 0.1929,
2048
+ "step": 340
2049
+ },
2050
+ {
2051
+ "epoch": 1.78,
2052
+ "learning_rate": 3.843844276180636e-06,
2053
+ "loss": 0.2393,
2054
+ "step": 341
2055
+ },
2056
+ {
2057
+ "epoch": 1.78,
2058
+ "learning_rate": 3.816177897667767e-06,
2059
+ "loss": 0.1986,
2060
+ "step": 342
2061
+ },
2062
+ {
2063
+ "epoch": 1.79,
2064
+ "learning_rate": 3.788549863988881e-06,
2065
+ "loss": 0.214,
2066
+ "step": 343
2067
+ },
2068
+ {
2069
+ "epoch": 1.79,
2070
+ "learning_rate": 3.7609610700355014e-06,
2071
+ "loss": 0.1814,
2072
+ "step": 344
2073
+ },
2074
+ {
2075
+ "epoch": 1.8,
2076
+ "learning_rate": 3.733412409428148e-06,
2077
+ "loss": 0.2161,
2078
+ "step": 345
2079
+ },
2080
+ {
2081
+ "epoch": 1.8,
2082
+ "learning_rate": 3.705904774487396e-06,
2083
+ "loss": 0.199,
2084
+ "step": 346
2085
+ },
2086
+ {
2087
+ "epoch": 1.81,
2088
+ "learning_rate": 3.678439056204968e-06,
2089
+ "loss": 0.1796,
2090
+ "step": 347
2091
+ },
2092
+ {
2093
+ "epoch": 1.81,
2094
+ "learning_rate": 3.6510161442148783e-06,
2095
+ "loss": 0.2804,
2096
+ "step": 348
2097
+ },
2098
+ {
2099
+ "epoch": 1.82,
2100
+ "learning_rate": 3.6236369267646148e-06,
2101
+ "loss": 0.2226,
2102
+ "step": 349
2103
+ },
2104
+ {
2105
+ "epoch": 1.82,
2106
+ "learning_rate": 3.5963022906863633e-06,
2107
+ "loss": 0.1898,
2108
+ "step": 350
2109
+ },
2110
+ {
2111
+ "epoch": 1.83,
2112
+ "learning_rate": 3.5690131213682943e-06,
2113
+ "loss": 0.1913,
2114
+ "step": 351
2115
+ },
2116
+ {
2117
+ "epoch": 1.83,
2118
+ "learning_rate": 3.5417703027258752e-06,
2119
+ "loss": 0.2153,
2120
+ "step": 352
2121
+ },
2122
+ {
2123
+ "epoch": 1.84,
2124
+ "learning_rate": 3.5145747171732448e-06,
2125
+ "loss": 0.2056,
2126
+ "step": 353
2127
+ },
2128
+ {
2129
+ "epoch": 1.84,
2130
+ "learning_rate": 3.4874272455946217e-06,
2131
+ "loss": 0.209,
2132
+ "step": 354
2133
+ },
2134
+ {
2135
+ "epoch": 1.85,
2136
+ "learning_rate": 3.4603287673157866e-06,
2137
+ "loss": 0.2405,
2138
+ "step": 355
2139
+ },
2140
+ {
2141
+ "epoch": 1.85,
2142
+ "learning_rate": 3.4332801600755895e-06,
2143
+ "loss": 0.1774,
2144
+ "step": 356
2145
+ },
2146
+ {
2147
+ "epoch": 1.86,
2148
+ "learning_rate": 3.406282299997521e-06,
2149
+ "loss": 0.2372,
2150
+ "step": 357
2151
+ },
2152
+ {
2153
+ "epoch": 1.86,
2154
+ "learning_rate": 3.3793360615613375e-06,
2155
+ "loss": 0.1953,
2156
+ "step": 358
2157
+ },
2158
+ {
2159
+ "epoch": 1.87,
2160
+ "learning_rate": 3.3524423175747334e-06,
2161
+ "loss": 0.181,
2162
+ "step": 359
2163
+ },
2164
+ {
2165
+ "epoch": 1.88,
2166
+ "learning_rate": 3.3256019391450696e-06,
2167
+ "loss": 0.2042,
2168
+ "step": 360
2169
+ },
2170
+ {
2171
+ "epoch": 1.88,
2172
+ "learning_rate": 3.2988157956511594e-06,
2173
+ "loss": 0.2109,
2174
+ "step": 361
2175
+ },
2176
+ {
2177
+ "epoch": 1.89,
2178
+ "learning_rate": 3.2720847547151096e-06,
2179
+ "loss": 0.1941,
2180
+ "step": 362
2181
+ },
2182
+ {
2183
+ "epoch": 1.89,
2184
+ "learning_rate": 3.245409682174217e-06,
2185
+ "loss": 0.1783,
2186
+ "step": 363
2187
+ },
2188
+ {
2189
+ "epoch": 1.9,
2190
+ "learning_rate": 3.2187914420529176e-06,
2191
+ "loss": 0.224,
2192
+ "step": 364
2193
+ },
2194
+ {
2195
+ "epoch": 1.9,
2196
+ "learning_rate": 3.192230896534808e-06,
2197
+ "loss": 0.1999,
2198
+ "step": 365
2199
+ },
2200
+ {
2201
+ "epoch": 1.91,
2202
+ "learning_rate": 3.1657289059347184e-06,
2203
+ "loss": 0.1669,
2204
+ "step": 366
2205
+ },
2206
+ {
2207
+ "epoch": 1.91,
2208
+ "learning_rate": 3.139286328670841e-06,
2209
+ "loss": 0.2206,
2210
+ "step": 367
2211
+ },
2212
+ {
2213
+ "epoch": 1.92,
2214
+ "learning_rate": 3.1129040212369286e-06,
2215
+ "loss": 0.2675,
2216
+ "step": 368
2217
+ },
2218
+ {
2219
+ "epoch": 1.92,
2220
+ "learning_rate": 3.0865828381745515e-06,
2221
+ "loss": 0.2056,
2222
+ "step": 369
2223
+ },
2224
+ {
2225
+ "epoch": 1.93,
2226
+ "learning_rate": 3.0603236320454195e-06,
2227
+ "loss": 0.1654,
2228
+ "step": 370
2229
+ },
2230
+ {
2231
+ "epoch": 1.93,
2232
+ "learning_rate": 3.0341272534037657e-06,
2233
+ "loss": 0.1978,
2234
+ "step": 371
2235
+ },
2236
+ {
2237
+ "epoch": 1.94,
2238
+ "learning_rate": 3.007994550768793e-06,
2239
+ "loss": 0.1651,
2240
+ "step": 372
2241
+ },
2242
+ {
2243
+ "epoch": 1.94,
2244
+ "learning_rate": 2.9819263705971984e-06,
2245
+ "loss": 0.274,
2246
+ "step": 373
2247
+ },
2248
+ {
2249
+ "epoch": 1.95,
2250
+ "learning_rate": 2.9559235572557486e-06,
2251
+ "loss": 0.2052,
2252
+ "step": 374
2253
+ },
2254
+ {
2255
+ "epoch": 1.95,
2256
+ "learning_rate": 2.929986952993933e-06,
2257
+ "loss": 0.2441,
2258
+ "step": 375
2259
+ },
2260
+ {
2261
+ "epoch": 1.96,
2262
+ "learning_rate": 2.9041173979166813e-06,
2263
+ "loss": 0.2067,
2264
+ "step": 376
2265
+ },
2266
+ {
2267
+ "epoch": 1.96,
2268
+ "learning_rate": 2.878315729957151e-06,
2269
+ "loss": 0.2262,
2270
+ "step": 377
2271
+ },
2272
+ {
2273
+ "epoch": 1.97,
2274
+ "learning_rate": 2.8525827848495912e-06,
2275
+ "loss": 0.1759,
2276
+ "step": 378
2277
+ },
2278
+ {
2279
+ "epoch": 1.97,
2280
+ "learning_rate": 2.826919396102269e-06,
2281
+ "loss": 0.2122,
2282
+ "step": 379
2283
+ },
2284
+ {
2285
+ "epoch": 1.98,
2286
+ "learning_rate": 2.8013263949704706e-06,
2287
+ "loss": 0.2447,
2288
+ "step": 380
2289
+ },
2290
+ {
2291
+ "epoch": 1.98,
2292
+ "learning_rate": 2.77580461042958e-06,
2293
+ "loss": 0.2236,
2294
+ "step": 381
2295
+ },
2296
+ {
2297
+ "epoch": 1.99,
2298
+ "learning_rate": 2.75035486914822e-06,
2299
+ "loss": 0.1704,
2300
+ "step": 382
2301
+ },
2302
+ {
2303
+ "epoch": 1.99,
2304
+ "learning_rate": 2.7249779954614865e-06,
2305
+ "loss": 0.2155,
2306
+ "step": 383
2307
+ },
2308
+ {
2309
+ "epoch": 2.0,
2310
+ "learning_rate": 2.6996748113442397e-06,
2311
+ "loss": 0.2013,
2312
+ "step": 384
2313
+ },
2314
+ {
2315
+ "epoch": 2.01,
2316
+ "learning_rate": 2.674446136384486e-06,
2317
+ "loss": 0.1242,
2318
+ "step": 385
2319
+ },
2320
+ {
2321
+ "epoch": 2.01,
2322
+ "learning_rate": 2.6492927877568243e-06,
2323
+ "loss": 0.1077,
2324
+ "step": 386
2325
+ },
2326
+ {
2327
+ "epoch": 2.02,
2328
+ "learning_rate": 2.6242155801959814e-06,
2329
+ "loss": 0.1202,
2330
+ "step": 387
2331
+ },
2332
+ {
2333
+ "epoch": 2.02,
2334
+ "learning_rate": 2.599215325970423e-06,
2335
+ "loss": 0.1065,
2336
+ "step": 388
2337
+ },
2338
+ {
2339
+ "epoch": 2.03,
2340
+ "learning_rate": 2.574292834856037e-06,
2341
+ "loss": 0.112,
2342
+ "step": 389
2343
+ },
2344
+ {
2345
+ "epoch": 2.03,
2346
+ "learning_rate": 2.5494489141099155e-06,
2347
+ "loss": 0.1099,
2348
+ "step": 390
2349
+ },
2350
+ {
2351
+ "epoch": 2.04,
2352
+ "learning_rate": 2.5246843684441953e-06,
2353
+ "loss": 0.0902,
2354
+ "step": 391
2355
+ },
2356
+ {
2357
+ "epoch": 2.04,
2358
+ "learning_rate": 2.5000000000000015e-06,
2359
+ "loss": 0.115,
2360
+ "step": 392
2361
+ },
2362
+ {
2363
+ "epoch": 2.05,
2364
+ "learning_rate": 2.4753966083214613e-06,
2365
+ "loss": 0.1344,
2366
+ "step": 393
2367
+ },
2368
+ {
2369
+ "epoch": 2.05,
2370
+ "learning_rate": 2.4508749903298086e-06,
2371
+ "loss": 0.0988,
2372
+ "step": 394
2373
+ },
2374
+ {
2375
+ "epoch": 2.06,
2376
+ "learning_rate": 2.4264359402975683e-06,
2377
+ "loss": 0.0935,
2378
+ "step": 395
2379
+ },
2380
+ {
2381
+ "epoch": 2.06,
2382
+ "learning_rate": 2.4020802498228333e-06,
2383
+ "loss": 0.0863,
2384
+ "step": 396
2385
+ },
2386
+ {
2387
+ "epoch": 2.07,
2388
+ "learning_rate": 2.377808707803616e-06,
2389
+ "loss": 0.1165,
2390
+ "step": 397
2391
+ },
2392
+ {
2393
+ "epoch": 2.07,
2394
+ "learning_rate": 2.3536221004123068e-06,
2395
+ "loss": 0.116,
2396
+ "step": 398
2397
+ },
2398
+ {
2399
+ "epoch": 2.08,
2400
+ "learning_rate": 2.3295212110701994e-06,
2401
+ "loss": 0.0955,
2402
+ "step": 399
2403
+ },
2404
+ {
2405
+ "epoch": 2.08,
2406
+ "learning_rate": 2.3055068204221226e-06,
2407
+ "loss": 0.0887,
2408
+ "step": 400
2409
+ },
2410
+ {
2411
+ "epoch": 2.09,
2412
+ "learning_rate": 2.28157970631115e-06,
2413
+ "loss": 0.0977,
2414
+ "step": 401
2415
+ },
2416
+ {
2417
+ "epoch": 2.09,
2418
+ "learning_rate": 2.2577406437534055e-06,
2419
+ "loss": 0.0857,
2420
+ "step": 402
2421
+ },
2422
+ {
2423
+ "epoch": 2.1,
2424
+ "learning_rate": 2.2339904049129648e-06,
2425
+ "loss": 0.1049,
2426
+ "step": 403
2427
+ },
2428
+ {
2429
+ "epoch": 2.1,
2430
+ "learning_rate": 2.2103297590768334e-06,
2431
+ "loss": 0.0902,
2432
+ "step": 404
2433
+ },
2434
+ {
2435
+ "epoch": 2.11,
2436
+ "learning_rate": 2.186759472630045e-06,
2437
+ "loss": 0.101,
2438
+ "step": 405
2439
+ },
2440
+ {
2441
+ "epoch": 2.11,
2442
+ "learning_rate": 2.1632803090308194e-06,
2443
+ "loss": 0.0944,
2444
+ "step": 406
2445
+ },
2446
+ {
2447
+ "epoch": 2.12,
2448
+ "learning_rate": 2.1398930287858515e-06,
2449
+ "loss": 0.1011,
2450
+ "step": 407
2451
+ },
2452
+ {
2453
+ "epoch": 2.12,
2454
+ "learning_rate": 2.1165983894256647e-06,
2455
+ "loss": 0.0983,
2456
+ "step": 408
2457
+ },
2458
+ {
2459
+ "epoch": 2.13,
2460
+ "learning_rate": 2.093397145480081e-06,
2461
+ "loss": 0.1193,
2462
+ "step": 409
2463
+ },
2464
+ {
2465
+ "epoch": 2.14,
2466
+ "learning_rate": 2.070290048453777e-06,
2467
+ "loss": 0.1118,
2468
+ "step": 410
2469
+ },
2470
+ {
2471
+ "epoch": 2.14,
2472
+ "learning_rate": 2.0472778468019456e-06,
2473
+ "loss": 0.0822,
2474
+ "step": 411
2475
+ },
2476
+ {
2477
+ "epoch": 2.15,
2478
+ "learning_rate": 2.0243612859060526e-06,
2479
+ "loss": 0.0824,
2480
+ "step": 412
2481
+ },
2482
+ {
2483
+ "epoch": 2.15,
2484
+ "learning_rate": 2.001541108049687e-06,
2485
+ "loss": 0.1003,
2486
+ "step": 413
2487
+ },
2488
+ {
2489
+ "epoch": 2.16,
2490
+ "learning_rate": 1.978818052394528e-06,
2491
+ "loss": 0.1292,
2492
+ "step": 414
2493
+ },
2494
+ {
2495
+ "epoch": 2.16,
2496
+ "learning_rate": 1.956192854956397e-06,
2497
+ "loss": 0.0978,
2498
+ "step": 415
2499
+ },
2500
+ {
2501
+ "epoch": 2.17,
2502
+ "learning_rate": 1.933666248581418e-06,
2503
+ "loss": 0.1109,
2504
+ "step": 416
2505
+ },
2506
+ {
2507
+ "epoch": 2.17,
2508
+ "learning_rate": 1.911238962922282e-06,
2509
+ "loss": 0.0916,
2510
+ "step": 417
2511
+ },
2512
+ {
2513
+ "epoch": 2.18,
2514
+ "learning_rate": 1.888911724414612e-06,
2515
+ "loss": 0.0734,
2516
+ "step": 418
2517
+ },
2518
+ {
2519
+ "epoch": 2.18,
2520
+ "learning_rate": 1.8666852562534288e-06,
2521
+ "loss": 0.1082,
2522
+ "step": 419
2523
+ },
2524
+ {
2525
+ "epoch": 2.19,
2526
+ "learning_rate": 1.8445602783697375e-06,
2527
+ "loss": 0.0735,
2528
+ "step": 420
2529
+ },
2530
+ {
2531
+ "epoch": 2.19,
2532
+ "learning_rate": 1.8225375074071943e-06,
2533
+ "loss": 0.0999,
2534
+ "step": 421
2535
+ },
2536
+ {
2537
+ "epoch": 2.2,
2538
+ "learning_rate": 1.8006176566989064e-06,
2539
+ "loss": 0.0849,
2540
+ "step": 422
2541
+ },
2542
+ {
2543
+ "epoch": 2.2,
2544
+ "learning_rate": 1.778801436244319e-06,
2545
+ "loss": 0.0865,
2546
+ "step": 423
2547
+ },
2548
+ {
2549
+ "epoch": 2.21,
2550
+ "learning_rate": 1.7570895526862202e-06,
2551
+ "loss": 0.1245,
2552
+ "step": 424
2553
+ },
2554
+ {
2555
+ "epoch": 2.21,
2556
+ "learning_rate": 1.735482709287854e-06,
2557
+ "loss": 0.1155,
2558
+ "step": 425
2559
+ },
2560
+ {
2561
+ "epoch": 2.22,
2562
+ "learning_rate": 1.7139816059101372e-06,
2563
+ "loss": 0.0941,
2564
+ "step": 426
2565
+ },
2566
+ {
2567
+ "epoch": 2.22,
2568
+ "learning_rate": 1.6925869389889954e-06,
2569
+ "loss": 0.0855,
2570
+ "step": 427
2571
+ },
2572
+ {
2573
+ "epoch": 2.23,
2574
+ "learning_rate": 1.6712994015127976e-06,
2575
+ "loss": 0.1066,
2576
+ "step": 428
2577
+ },
2578
+ {
2579
+ "epoch": 2.23,
2580
+ "learning_rate": 1.6501196829999179e-06,
2581
+ "loss": 0.0912,
2582
+ "step": 429
2583
+ },
2584
+ {
2585
+ "epoch": 2.24,
2586
+ "learning_rate": 1.629048469476398e-06,
2587
+ "loss": 0.0805,
2588
+ "step": 430
2589
+ },
2590
+ {
2591
+ "epoch": 2.24,
2592
+ "learning_rate": 1.6080864434537259e-06,
2593
+ "loss": 0.0978,
2594
+ "step": 431
2595
+ },
2596
+ {
2597
+ "epoch": 2.25,
2598
+ "learning_rate": 1.5872342839067305e-06,
2599
+ "loss": 0.0821,
2600
+ "step": 432
2601
+ },
2602
+ {
2603
+ "epoch": 2.26,
2604
+ "learning_rate": 1.5664926662515834e-06,
2605
+ "loss": 0.0929,
2606
+ "step": 433
2607
+ },
2608
+ {
2609
+ "epoch": 2.26,
2610
+ "learning_rate": 1.5458622623239306e-06,
2611
+ "loss": 0.1106,
2612
+ "step": 434
2613
+ },
2614
+ {
2615
+ "epoch": 2.27,
2616
+ "learning_rate": 1.525343740357128e-06,
2617
+ "loss": 0.1023,
2618
+ "step": 435
2619
+ },
2620
+ {
2621
+ "epoch": 2.27,
2622
+ "learning_rate": 1.5049377649605906e-06,
2623
+ "loss": 0.0907,
2624
+ "step": 436
2625
+ },
2626
+ {
2627
+ "epoch": 2.28,
2628
+ "learning_rate": 1.4846449970982747e-06,
2629
+ "loss": 0.0884,
2630
+ "step": 437
2631
+ },
2632
+ {
2633
+ "epoch": 2.28,
2634
+ "learning_rate": 1.4644660940672628e-06,
2635
+ "loss": 0.099,
2636
+ "step": 438
2637
+ },
2638
+ {
2639
+ "epoch": 2.29,
2640
+ "learning_rate": 1.4444017094764762e-06,
2641
+ "loss": 0.1076,
2642
+ "step": 439
2643
+ },
2644
+ {
2645
+ "epoch": 2.29,
2646
+ "learning_rate": 1.4244524932255026e-06,
2647
+ "loss": 0.1244,
2648
+ "step": 440
2649
+ },
2650
+ {
2651
+ "epoch": 2.3,
2652
+ "learning_rate": 1.404619091483546e-06,
2653
+ "loss": 0.0884,
2654
+ "step": 441
2655
+ },
2656
+ {
2657
+ "epoch": 2.3,
2658
+ "learning_rate": 1.384902146668497e-06,
2659
+ "loss": 0.1157,
2660
+ "step": 442
2661
+ },
2662
+ {
2663
+ "epoch": 2.31,
2664
+ "learning_rate": 1.3653022974261216e-06,
2665
+ "loss": 0.0925,
2666
+ "step": 443
2667
+ },
2668
+ {
2669
+ "epoch": 2.31,
2670
+ "learning_rate": 1.3458201786093795e-06,
2671
+ "loss": 0.1063,
2672
+ "step": 444
2673
+ },
2674
+ {
2675
+ "epoch": 2.32,
2676
+ "learning_rate": 1.3264564212578613e-06,
2677
+ "loss": 0.0987,
2678
+ "step": 445
2679
+ },
2680
+ {
2681
+ "epoch": 2.32,
2682
+ "learning_rate": 1.3072116525773399e-06,
2683
+ "loss": 0.1159,
2684
+ "step": 446
2685
+ },
2686
+ {
2687
+ "epoch": 2.33,
2688
+ "learning_rate": 1.2880864959194666e-06,
2689
+ "loss": 0.0787,
2690
+ "step": 447
2691
+ },
2692
+ {
2693
+ "epoch": 2.33,
2694
+ "learning_rate": 1.2690815707615727e-06,
2695
+ "loss": 0.0789,
2696
+ "step": 448
2697
+ },
2698
+ {
2699
+ "epoch": 2.34,
2700
+ "learning_rate": 1.2501974926866067e-06,
2701
+ "loss": 0.0919,
2702
+ "step": 449
2703
+ },
2704
+ {
2705
+ "epoch": 2.34,
2706
+ "learning_rate": 1.2314348733631958e-06,
2707
+ "loss": 0.0977,
2708
+ "step": 450
2709
+ },
2710
+ {
2711
+ "epoch": 2.35,
2712
+ "learning_rate": 1.212794320525828e-06,
2713
+ "loss": 0.1385,
2714
+ "step": 451
2715
+ },
2716
+ {
2717
+ "epoch": 2.35,
2718
+ "learning_rate": 1.194276437955177e-06,
2719
+ "loss": 0.0776,
2720
+ "step": 452
2721
+ },
2722
+ {
2723
+ "epoch": 2.36,
2724
+ "learning_rate": 1.175881825458537e-06,
2725
+ "loss": 0.0822,
2726
+ "step": 453
2727
+ },
2728
+ {
2729
+ "epoch": 2.36,
2730
+ "learning_rate": 1.1576110788503985e-06,
2731
+ "loss": 0.1106,
2732
+ "step": 454
2733
+ },
2734
+ {
2735
+ "epoch": 2.37,
2736
+ "learning_rate": 1.1394647899331484e-06,
2737
+ "loss": 0.1128,
2738
+ "step": 455
2739
+ },
2740
+ {
2741
+ "epoch": 2.38,
2742
+ "learning_rate": 1.1214435464779006e-06,
2743
+ "loss": 0.0835,
2744
+ "step": 456
2745
+ },
2746
+ {
2747
+ "epoch": 2.38,
2748
+ "learning_rate": 1.1035479322054594e-06,
2749
+ "loss": 0.0534,
2750
+ "step": 457
2751
+ },
2752
+ {
2753
+ "epoch": 2.39,
2754
+ "learning_rate": 1.085778526767407e-06,
2755
+ "loss": 0.1092,
2756
+ "step": 458
2757
+ },
2758
+ {
2759
+ "epoch": 2.39,
2760
+ "learning_rate": 1.0681359057273388e-06,
2761
+ "loss": 0.0824,
2762
+ "step": 459
2763
+ },
2764
+ {
2765
+ "epoch": 2.4,
2766
+ "learning_rate": 1.050620640542208e-06,
2767
+ "loss": 0.1089,
2768
+ "step": 460
2769
+ },
2770
+ {
2771
+ "epoch": 2.4,
2772
+ "learning_rate": 1.0332332985438248e-06,
2773
+ "loss": 0.1,
2774
+ "step": 461
2775
+ },
2776
+ {
2777
+ "epoch": 2.41,
2778
+ "learning_rate": 1.0159744429204776e-06,
2779
+ "loss": 0.1081,
2780
+ "step": 462
2781
+ },
2782
+ {
2783
+ "epoch": 2.41,
2784
+ "learning_rate": 9.988446326986885e-07,
2785
+ "loss": 0.0898,
2786
+ "step": 463
2787
+ },
2788
+ {
2789
+ "epoch": 2.42,
2790
+ "learning_rate": 9.81844422725109e-07,
2791
+ "loss": 0.0862,
2792
+ "step": 464
2793
+ },
2794
+ {
2795
+ "epoch": 2.42,
2796
+ "learning_rate": 9.64974363648548e-07,
2797
+ "loss": 0.1157,
2798
+ "step": 465
2799
+ },
2800
+ {
2801
+ "epoch": 2.43,
2802
+ "learning_rate": 9.482350019021314e-07,
2803
+ "loss": 0.1023,
2804
+ "step": 466
2805
+ },
2806
+ {
2807
+ "epoch": 2.43,
2808
+ "learning_rate": 9.316268796856093e-07,
2809
+ "loss": 0.1397,
2810
+ "step": 467
2811
+ },
2812
+ {
2813
+ "epoch": 2.44,
2814
+ "learning_rate": 9.151505349477901e-07,
2815
+ "loss": 0.1318,
2816
+ "step": 468
2817
+ },
2818
+ {
2819
+ "epoch": 2.44,
2820
+ "learning_rate": 8.988065013691166e-07,
2821
+ "loss": 0.1084,
2822
+ "step": 469
2823
+ },
2824
+ {
2825
+ "epoch": 2.45,
2826
+ "learning_rate": 8.8259530834438e-07,
2827
+ "loss": 0.0718,
2828
+ "step": 470
2829
+ },
2830
+ {
2831
+ "epoch": 2.45,
2832
+ "learning_rate": 8.665174809655707e-07,
2833
+ "loss": 0.1179,
2834
+ "step": 471
2835
+ },
2836
+ {
2837
+ "epoch": 2.46,
2838
+ "learning_rate": 8.505735400048748e-07,
2839
+ "loss": 0.0964,
2840
+ "step": 472
2841
+ },
2842
+ {
2843
+ "epoch": 2.46,
2844
+ "learning_rate": 8.347640018977976e-07,
2845
+ "loss": 0.0914,
2846
+ "step": 473
2847
+ },
2848
+ {
2849
+ "epoch": 2.47,
2850
+ "learning_rate": 8.19089378726447e-07,
2851
+ "loss": 0.0838,
2852
+ "step": 474
2853
+ },
2854
+ {
2855
+ "epoch": 2.47,
2856
+ "learning_rate": 8.035501782029348e-07,
2857
+ "loss": 0.0839,
2858
+ "step": 475
2859
+ },
2860
+ {
2861
+ "epoch": 2.48,
2862
+ "learning_rate": 7.881469036529427e-07,
2863
+ "loss": 0.0858,
2864
+ "step": 476
2865
+ },
2866
+ {
2867
+ "epoch": 2.48,
2868
+ "learning_rate": 7.728800539994113e-07,
2869
+ "loss": 0.0994,
2870
+ "step": 477
2871
+ },
2872
+ {
2873
+ "epoch": 2.49,
2874
+ "learning_rate": 7.577501237463841e-07,
2875
+ "loss": 0.0939,
2876
+ "step": 478
2877
+ },
2878
+ {
2879
+ "epoch": 2.49,
2880
+ "learning_rate": 7.427576029629868e-07,
2881
+ "loss": 0.0941,
2882
+ "step": 479
2883
+ },
2884
+ {
2885
+ "epoch": 2.5,
2886
+ "learning_rate": 7.279029772675572e-07,
2887
+ "loss": 0.116,
2888
+ "step": 480
2889
+ },
2890
+ {
2891
+ "epoch": 2.51,
2892
+ "learning_rate": 7.131867278119131e-07,
2893
+ "loss": 0.0997,
2894
+ "step": 481
2895
+ },
2896
+ {
2897
+ "epoch": 2.51,
2898
+ "learning_rate": 6.98609331265766e-07,
2899
+ "loss": 0.1012,
2900
+ "step": 482
2901
+ },
2902
+ {
2903
+ "epoch": 2.52,
2904
+ "learning_rate": 6.841712598012867e-07,
2905
+ "loss": 0.0957,
2906
+ "step": 483
2907
+ },
2908
+ {
2909
+ "epoch": 2.52,
2910
+ "learning_rate": 6.698729810778065e-07,
2911
+ "loss": 0.0828,
2912
+ "step": 484
2913
+ },
2914
+ {
2915
+ "epoch": 2.53,
2916
+ "learning_rate": 6.557149582266726e-07,
2917
+ "loss": 0.0887,
2918
+ "step": 485
2919
+ },
2920
+ {
2921
+ "epoch": 2.53,
2922
+ "learning_rate": 6.416976498362432e-07,
2923
+ "loss": 0.0826,
2924
+ "step": 486
2925
+ },
2926
+ {
2927
+ "epoch": 2.54,
2928
+ "learning_rate": 6.278215099370388e-07,
2929
+ "loss": 0.102,
2930
+ "step": 487
2931
+ },
2932
+ {
2933
+ "epoch": 2.54,
2934
+ "learning_rate": 6.140869879870287e-07,
2935
+ "loss": 0.0971,
2936
+ "step": 488
2937
+ },
2938
+ {
2939
+ "epoch": 2.55,
2940
+ "learning_rate": 6.004945288570813e-07,
2941
+ "loss": 0.0942,
2942
+ "step": 489
2943
+ },
2944
+ {
2945
+ "epoch": 2.55,
2946
+ "learning_rate": 5.870445728165447e-07,
2947
+ "loss": 0.0809,
2948
+ "step": 490
2949
+ },
2950
+ {
2951
+ "epoch": 2.56,
2952
+ "learning_rate": 5.737375555189966e-07,
2953
+ "loss": 0.1007,
2954
+ "step": 491
2955
+ },
2956
+ {
2957
+ "epoch": 2.56,
2958
+ "learning_rate": 5.60573907988124e-07,
2959
+ "loss": 0.0954,
2960
+ "step": 492
2961
+ },
2962
+ {
2963
+ "epoch": 2.57,
2964
+ "learning_rate": 5.475540566037685e-07,
2965
+ "loss": 0.0896,
2966
+ "step": 493
2967
+ },
2968
+ {
2969
+ "epoch": 2.57,
2970
+ "learning_rate": 5.346784230881119e-07,
2971
+ "loss": 0.0798,
2972
+ "step": 494
2973
+ },
2974
+ {
2975
+ "epoch": 2.58,
2976
+ "learning_rate": 5.219474244920164e-07,
2977
+ "loss": 0.0998,
2978
+ "step": 495
2979
+ },
2980
+ {
2981
+ "epoch": 2.58,
2982
+ "learning_rate": 5.0936147318152e-07,
2983
+ "loss": 0.0859,
2984
+ "step": 496
2985
+ },
2986
+ {
2987
+ "epoch": 2.59,
2988
+ "learning_rate": 4.96920976824472e-07,
2989
+ "loss": 0.1017,
2990
+ "step": 497
2991
+ },
2992
+ {
2993
+ "epoch": 2.59,
2994
+ "learning_rate": 4.846263383773364e-07,
2995
+ "loss": 0.0919,
2996
+ "step": 498
2997
+ },
2998
+ {
2999
+ "epoch": 2.6,
3000
+ "learning_rate": 4.7247795607213656e-07,
3001
+ "loss": 0.0834,
3002
+ "step": 499
3003
+ },
3004
+ {
3005
+ "epoch": 2.6,
3006
+ "learning_rate": 4.604762234035548e-07,
3007
+ "loss": 0.0962,
3008
+ "step": 500
3009
+ },
3010
+ {
3011
+ "epoch": 2.61,
3012
+ "learning_rate": 4.486215291161894e-07,
3013
+ "loss": 0.0901,
3014
+ "step": 501
3015
+ },
3016
+ {
3017
+ "epoch": 2.61,
3018
+ "learning_rate": 4.369142571919599e-07,
3019
+ "loss": 0.0805,
3020
+ "step": 502
3021
+ },
3022
+ {
3023
+ "epoch": 2.62,
3024
+ "learning_rate": 4.2535478683767173e-07,
3025
+ "loss": 0.1045,
3026
+ "step": 503
3027
+ },
3028
+ {
3029
+ "epoch": 2.62,
3030
+ "learning_rate": 4.139434924727359e-07,
3031
+ "loss": 0.0901,
3032
+ "step": 504
3033
+ },
3034
+ {
3035
+ "epoch": 2.63,
3036
+ "learning_rate": 4.0268074371703324e-07,
3037
+ "loss": 0.0974,
3038
+ "step": 505
3039
+ },
3040
+ {
3041
+ "epoch": 2.64,
3042
+ "learning_rate": 3.915669053789528e-07,
3043
+ "loss": 0.1047,
3044
+ "step": 506
3045
+ },
3046
+ {
3047
+ "epoch": 2.64,
3048
+ "learning_rate": 3.8060233744356634e-07,
3049
+ "loss": 0.0727,
3050
+ "step": 507
3051
+ },
3052
+ {
3053
+ "epoch": 2.65,
3054
+ "learning_rate": 3.697873950609737e-07,
3055
+ "loss": 0.0828,
3056
+ "step": 508
3057
+ },
3058
+ {
3059
+ "epoch": 2.65,
3060
+ "learning_rate": 3.591224285347972e-07,
3061
+ "loss": 0.091,
3062
+ "step": 509
3063
+ },
3064
+ {
3065
+ "epoch": 2.66,
3066
+ "learning_rate": 3.486077833108342e-07,
3067
+ "loss": 0.0707,
3068
+ "step": 510
3069
+ },
3070
+ {
3071
+ "epoch": 2.66,
3072
+ "learning_rate": 3.382437999658705e-07,
3073
+ "loss": 0.0831,
3074
+ "step": 511
3075
+ },
3076
+ {
3077
+ "epoch": 2.67,
3078
+ "learning_rate": 3.2803081419664483e-07,
3079
+ "loss": 0.1058,
3080
+ "step": 512
3081
+ },
3082
+ {
3083
+ "epoch": 2.67,
3084
+ "learning_rate": 3.179691568089799e-07,
3085
+ "loss": 0.102,
3086
+ "step": 513
3087
+ },
3088
+ {
3089
+ "epoch": 2.68,
3090
+ "learning_rate": 3.0805915370706596e-07,
3091
+ "loss": 0.138,
3092
+ "step": 514
3093
+ },
3094
+ {
3095
+ "epoch": 2.68,
3096
+ "learning_rate": 2.983011258829005e-07,
3097
+ "loss": 0.0981,
3098
+ "step": 515
3099
+ },
3100
+ {
3101
+ "epoch": 2.69,
3102
+ "learning_rate": 2.88695389405898e-07,
3103
+ "loss": 0.1052,
3104
+ "step": 516
3105
+ },
3106
+ {
3107
+ "epoch": 2.69,
3108
+ "learning_rate": 2.7924225541264616e-07,
3109
+ "loss": 0.079,
3110
+ "step": 517
3111
+ },
3112
+ {
3113
+ "epoch": 2.7,
3114
+ "learning_rate": 2.699420300968314e-07,
3115
+ "loss": 0.102,
3116
+ "step": 518
3117
+ },
3118
+ {
3119
+ "epoch": 2.7,
3120
+ "learning_rate": 2.6079501469932154e-07,
3121
+ "loss": 0.1104,
3122
+ "step": 519
3123
+ },
3124
+ {
3125
+ "epoch": 2.71,
3126
+ "learning_rate": 2.518015054984041e-07,
3127
+ "loss": 0.1007,
3128
+ "step": 520
3129
+ },
3130
+ {
3131
+ "epoch": 2.71,
3132
+ "learning_rate": 2.429617938001938e-07,
3133
+ "loss": 0.0771,
3134
+ "step": 521
3135
+ },
3136
+ {
3137
+ "epoch": 2.72,
3138
+ "learning_rate": 2.3427616592919587e-07,
3139
+ "loss": 0.0873,
3140
+ "step": 522
3141
+ },
3142
+ {
3143
+ "epoch": 2.72,
3144
+ "learning_rate": 2.257449032190323e-07,
3145
+ "loss": 0.0779,
3146
+ "step": 523
3147
+ },
3148
+ {
3149
+ "epoch": 2.73,
3150
+ "learning_rate": 2.1736828200332628e-07,
3151
+ "loss": 0.0913,
3152
+ "step": 524
3153
+ },
3154
+ {
3155
+ "epoch": 2.73,
3156
+ "learning_rate": 2.0914657360675606e-07,
3157
+ "loss": 0.079,
3158
+ "step": 525
3159
+ },
3160
+ {
3161
+ "epoch": 2.74,
3162
+ "learning_rate": 2.0108004433626316e-07,
3163
+ "loss": 0.0872,
3164
+ "step": 526
3165
+ },
3166
+ {
3167
+ "epoch": 2.74,
3168
+ "learning_rate": 1.9316895547242698e-07,
3169
+ "loss": 0.0913,
3170
+ "step": 527
3171
+ },
3172
+ {
3173
+ "epoch": 2.75,
3174
+ "learning_rate": 1.8541356326100436e-07,
3175
+ "loss": 0.1249,
3176
+ "step": 528
3177
+ },
3178
+ {
3179
+ "epoch": 2.76,
3180
+ "learning_rate": 1.7781411890462453e-07,
3181
+ "loss": 0.0924,
3182
+ "step": 529
3183
+ },
3184
+ {
3185
+ "epoch": 2.76,
3186
+ "learning_rate": 1.7037086855465902e-07,
3187
+ "loss": 0.0917,
3188
+ "step": 530
3189
+ },
3190
+ {
3191
+ "epoch": 2.77,
3192
+ "learning_rate": 1.6308405330324294e-07,
3193
+ "loss": 0.1011,
3194
+ "step": 531
3195
+ },
3196
+ {
3197
+ "epoch": 2.77,
3198
+ "learning_rate": 1.559539091754686e-07,
3199
+ "loss": 0.1398,
3200
+ "step": 532
3201
+ },
3202
+ {
3203
+ "epoch": 2.78,
3204
+ "learning_rate": 1.4898066712173974e-07,
3205
+ "loss": 0.0915,
3206
+ "step": 533
3207
+ },
3208
+ {
3209
+ "epoch": 2.78,
3210
+ "learning_rate": 1.4216455301029274e-07,
3211
+ "loss": 0.1069,
3212
+ "step": 534
3213
+ },
3214
+ {
3215
+ "epoch": 2.79,
3216
+ "learning_rate": 1.3550578761987675e-07,
3217
+ "loss": 0.1412,
3218
+ "step": 535
3219
+ },
3220
+ {
3221
+ "epoch": 2.79,
3222
+ "learning_rate": 1.2900458663260506e-07,
3223
+ "loss": 0.0882,
3224
+ "step": 536
3225
+ },
3226
+ {
3227
+ "epoch": 2.8,
3228
+ "learning_rate": 1.2266116062696954e-07,
3229
+ "loss": 0.1067,
3230
+ "step": 537
3231
+ },
3232
+ {
3233
+ "epoch": 2.8,
3234
+ "learning_rate": 1.164757150710194e-07,
3235
+ "loss": 0.0994,
3236
+ "step": 538
3237
+ },
3238
+ {
3239
+ "epoch": 2.81,
3240
+ "learning_rate": 1.1044845031570383e-07,
3241
+ "loss": 0.1005,
3242
+ "step": 539
3243
+ },
3244
+ {
3245
+ "epoch": 2.81,
3246
+ "learning_rate": 1.0457956158838545e-07,
3247
+ "loss": 0.1116,
3248
+ "step": 540
3249
+ },
3250
+ {
3251
+ "epoch": 2.82,
3252
+ "learning_rate": 9.886923898651534e-08,
3253
+ "loss": 0.0821,
3254
+ "step": 541
3255
+ },
3256
+ {
3257
+ "epoch": 2.82,
3258
+ "learning_rate": 9.33176674714753e-08,
3259
+ "loss": 0.1077,
3260
+ "step": 542
3261
+ },
3262
+ {
3263
+ "epoch": 2.83,
3264
+ "learning_rate": 8.792502686258752e-08,
3265
+ "loss": 0.0869,
3266
+ "step": 543
3267
+ },
3268
+ {
3269
+ "epoch": 2.83,
3270
+ "learning_rate": 8.269149183128988e-08,
3271
+ "loss": 0.0711,
3272
+ "step": 544
3273
+ },
3274
+ {
3275
+ "epoch": 2.84,
3276
+ "learning_rate": 7.76172318954782e-08,
3277
+ "loss": 0.108,
3278
+ "step": 545
3279
+ },
3280
+ {
3281
+ "epoch": 2.84,
3282
+ "learning_rate": 7.270241141401568e-08,
3283
+ "loss": 0.0847,
3284
+ "step": 546
3285
+ },
3286
+ {
3287
+ "epoch": 2.85,
3288
+ "learning_rate": 6.794718958140933e-08,
3289
+ "loss": 0.0918,
3290
+ "step": 547
3291
+ },
3292
+ {
3293
+ "epoch": 2.85,
3294
+ "learning_rate": 6.335172042265192e-08,
3295
+ "loss": 0.106,
3296
+ "step": 548
3297
+ },
3298
+ {
3299
+ "epoch": 2.86,
3300
+ "learning_rate": 5.891615278823537e-08,
3301
+ "loss": 0.0872,
3302
+ "step": 549
3303
+ },
3304
+ {
3305
+ "epoch": 2.86,
3306
+ "learning_rate": 5.4640630349329094e-08,
3307
+ "loss": 0.1141,
3308
+ "step": 550
3309
+ },
3310
+ {
3311
+ "epoch": 2.87,
3312
+ "learning_rate": 5.052529159312258e-08,
3313
+ "loss": 0.0851,
3314
+ "step": 551
3315
+ },
3316
+ {
3317
+ "epoch": 2.88,
3318
+ "learning_rate": 4.657026981834623e-08,
3319
+ "loss": 0.084,
3320
+ "step": 552
3321
+ },
3322
+ {
3323
+ "epoch": 2.88,
3324
+ "learning_rate": 4.2775693130948094e-08,
3325
+ "loss": 0.1081,
3326
+ "step": 553
3327
+ },
3328
+ {
3329
+ "epoch": 2.89,
3330
+ "learning_rate": 3.91416844399467e-08,
3331
+ "loss": 0.1032,
3332
+ "step": 554
3333
+ },
3334
+ {
3335
+ "epoch": 2.89,
3336
+ "learning_rate": 3.566836145345032e-08,
3337
+ "loss": 0.1003,
3338
+ "step": 555
3339
+ },
3340
+ {
3341
+ "epoch": 2.9,
3342
+ "learning_rate": 3.235583667484443e-08,
3343
+ "loss": 0.1128,
3344
+ "step": 556
3345
+ },
3346
+ {
3347
+ "epoch": 2.9,
3348
+ "learning_rate": 2.9204217399144696e-08,
3349
+ "loss": 0.0991,
3350
+ "step": 557
3351
+ },
3352
+ {
3353
+ "epoch": 2.91,
3354
+ "learning_rate": 2.6213605709525803e-08,
3355
+ "loss": 0.1097,
3356
+ "step": 558
3357
+ },
3358
+ {
3359
+ "epoch": 2.91,
3360
+ "learning_rate": 2.338409847401302e-08,
3361
+ "loss": 0.1033,
3362
+ "step": 559
3363
+ },
3364
+ {
3365
+ "epoch": 2.92,
3366
+ "learning_rate": 2.0715787342343586e-08,
3367
+ "loss": 0.0857,
3368
+ "step": 560
3369
+ },
3370
+ {
3371
+ "epoch": 2.92,
3372
+ "learning_rate": 1.820875874300021e-08,
3373
+ "loss": 0.1114,
3374
+ "step": 561
3375
+ },
3376
+ {
3377
+ "epoch": 2.93,
3378
+ "learning_rate": 1.5863093880408852e-08,
3379
+ "loss": 0.085,
3380
+ "step": 562
3381
+ },
3382
+ {
3383
+ "epoch": 2.93,
3384
+ "learning_rate": 1.3678868732311945e-08,
3385
+ "loss": 0.1088,
3386
+ "step": 563
3387
+ },
3388
+ {
3389
+ "epoch": 2.94,
3390
+ "learning_rate": 1.1656154047303691e-08,
3391
+ "loss": 0.0743,
3392
+ "step": 564
3393
+ },
3394
+ {
3395
+ "epoch": 2.94,
3396
+ "learning_rate": 9.795015342543013e-09,
3397
+ "loss": 0.0933,
3398
+ "step": 565
3399
+ },
3400
+ {
3401
+ "epoch": 2.95,
3402
+ "learning_rate": 8.095512901625247e-09,
3403
+ "loss": 0.1196,
3404
+ "step": 566
3405
+ },
3406
+ {
3407
+ "epoch": 2.95,
3408
+ "learning_rate": 6.557701772635372e-09,
3409
+ "loss": 0.0742,
3410
+ "step": 567
3411
+ },
3412
+ {
3413
+ "epoch": 2.96,
3414
+ "learning_rate": 5.181631766362216e-09,
3415
+ "loss": 0.0911,
3416
+ "step": 568
3417
+ },
3418
+ {
3419
+ "epoch": 2.96,
3420
+ "learning_rate": 3.967347454684745e-09,
3421
+ "loss": 0.0682,
3422
+ "step": 569
3423
+ },
3424
+ {
3425
+ "epoch": 2.97,
3426
+ "learning_rate": 2.9148881691298812e-09,
3427
+ "loss": 0.09,
3428
+ "step": 570
3429
+ },
3430
+ {
3431
+ "epoch": 2.97,
3432
+ "learning_rate": 2.0242879995968632e-09,
3433
+ "loss": 0.145,
3434
+ "step": 571
3435
+ },
3436
+ {
3437
+ "epoch": 2.98,
3438
+ "learning_rate": 1.2955757932542334e-09,
3439
+ "loss": 0.0886,
3440
+ "step": 572
3441
+ },
3442
+ {
3443
+ "epoch": 2.98,
3444
+ "learning_rate": 7.287751536050324e-10,
3445
+ "loss": 0.1035,
3446
+ "step": 573
3447
+ },
3448
+ {
3449
+ "epoch": 2.99,
3450
+ "learning_rate": 3.2390443972241113e-10,
3451
+ "loss": 0.0897,
3452
+ "step": 574
3453
+ },
3454
+ {
3455
+ "epoch": 2.99,
3456
+ "learning_rate": 8.097676565399504e-11,
3457
+ "loss": 0.0778,
3458
+ "step": 575
3459
+ },
3460
+ {
3461
+ "epoch": 3.0,
3462
+ "learning_rate": 0.0,
3463
+ "loss": 0.0837,
3464
+ "step": 576
3465
+ },
3466
+ {
3467
+ "epoch": 3.0,
3468
+ "step": 576,
3469
+ "total_flos": 8.257647728205496e+17,
3470
+ "train_loss": 0.2478648494127103,
3471
+ "train_runtime": 19054.9588,
3472
+ "train_samples_per_second": 1.625,
3473
+ "train_steps_per_second": 0.03
3474
+ }
3475
+ ],
3476
+ "max_steps": 576,
3477
+ "num_train_epochs": 3,
3478
+ "total_flos": 8.257647728205496e+17,
3479
+ "trial_name": null,
3480
+ "trial_params": null
3481
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5b9db6c3068c41b45d4e581f86be350bc69310c14b9f4d47c0c2a1fae58a592
3
+ size 3771