--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: whisper-large-pt-cv11 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: pt split: validation[:1000] args: pt metrics: - name: Wer type: wer value: 5.283075991522858 --- # whisper-large-pt-cv11 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1707 - Wer: 5.2831 - Cer: 1.6819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.1051 | 1.24 | 1000 | 0.1501 | 5.1922 | 1.5979 | | 0.0682 | 2.47 | 2000 | 0.1589 | 5.7523 | 1.8633 | | 0.0489 | 3.71 | 3000 | 0.1631 | 5.3588 | 1.6819 | | 0.0309 | 4.94 | 4000 | 0.1707 | 5.2831 | 1.6819 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2