File size: 4,216 Bytes
2ac91b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
language:
- fr
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
- cer
model-index:
- name: Whisper Large French
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_11_0 fr
      type: mozilla-foundation/common_voice_11_0
      config: fr
      split: test
      args: fr
    metrics:
    - name: WER
      type: wer
      value: 9.086701085988962
    - name: CER
      type: cer
      value: 3.327312134958326
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: google/fleurs fr_fr
      type: google/fleurs
      config: fr_fr
      split: test
      args: fr_fr
    metrics:
    - name: WER
      type: wer
      value: 8.6863088842391
    - name: CER
      type: cer
      value: 5.089870653452041
---

# Whisper Large French

This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on French using the train split of [Common Voice 11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0).

## Usage

```python

from transformers import pipeline

transcriber = pipeline(
  "automatic-speech-recognition", 
  model="jonatasgrosman/whisper-large-fr-cv11"
)

transcriber.model.config.forced_decoder_ids = (
  transcriber.tokenizer.get_decoder_prompt_ids(
    language="fr", 
    task="transcribe"
  )
)

transcription = transcriber("path/to/my_audio.wav")

```

## Evaluation

I've performed the evaluation of the model using the test split of two datasets, the [Common Voice 11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) (same dataset used for the fine-tuning) and the [Fleurs](https://huggingface.co/datasets/google/fleurs) (dataset not seen during the fine-tuning). As Whisper can transcribe casing and punctuation, I've performed the model evaluation in 2 different scenarios, one using the raw text and the other using the normalized text (lowercase + removal of punctuations). Additionally, for the Fleurs dataset, I've evaluated the model in a scenario where there are no transcriptions of numerical values since the way these values are described in this dataset is different from how they are described in the dataset used in fine-tuning (Common Voice), so it is expected that this difference in the way of describing numerical values will affect the performance of the model for this type of transcription in Fleurs.

### Common Voice 11

| | CER | WER |
| --- | --- | --- |
| [jonatasgrosman/whisper-large-fr-cv11](https://huggingface.co/jonatasgrosman/whisper-large-fr-cv11) | 4.31 | 13.66 |
| [jonatasgrosman/whisper-large-fr-cv11](https://huggingface.co/jonatasgrosman/whisper-large-fr-cv11) + text normalization | 3.33 | 9.09 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | 7.17 | 18.99 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) + text normalization | 5.74 | 12.82 |


### Fleurs

| | CER | WER |
| --- | --- | --- |
| [jonatasgrosman/whisper-large-fr-cv11](https://huggingface.co/jonatasgrosman/whisper-large-fr-cv11) | 4.96 | 14.24 |
| [jonatasgrosman/whisper-large-fr-cv11](https://huggingface.co/jonatasgrosman/whisper-large-fr-cv11) + text normalization | 5.09 | 8.69 |
| [jonatasgrosman/whisper-large-fr-cv11](https://huggingface.co/jonatasgrosman/whisper-large-fr-cv11) + keep only non-numeric samples | 3.14 | 12.10 |
| [jonatasgrosman/whisper-large-fr-cv11](https://huggingface.co/jonatasgrosman/whisper-large-fr-cv11) + text normalization + keep only non-numeric samples | 3.60 | 6.94 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | 3.55 | 12.81 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) + text normalization | 3.76 | 7.59 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) + keep only non-numeric samples | 3.12 | 11.24 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) + text normalization + keep only non-numeric samples | 3.65 | 6.99 |