jokerbit commited on
Commit
40971c7
·
verified ·
1 Parent(s): 9f20772

Upload folder using huggingface_hub

Browse files
Files changed (5) hide show
  1. README.md +19 -0
  2. pyproject.toml +34 -0
  3. src/main.py +50 -0
  4. src/pipeline.py +84 -0
  5. uv.lock +0 -0
README.md ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flux-schnell-edge-inference
2
+
3
+ This holds the baseline for the FLUX Schnel NVIDIA GeForce RTX 4090 contest, which can be forked freely and optimized
4
+
5
+ Some recommendations are as follows:
6
+ - Installing dependencies should be done in `pyproject.toml`, including git dependencies
7
+ - HuggingFace models should be specified in the `models` array in the `pyproject.toml` file, and will be downloaded before benchmarking
8
+ - The pipeline does **not** have internet access so all dependencies and models must be included in the `pyproject.toml`
9
+ - Compiled models should be hosted on HuggingFace and included in the `models` array in the `pyproject.toml` (rather than compiling during loading). Loading time matters far more than file sizes
10
+ - Avoid changing `src/main.py`, as that includes mostly protocol logic. Most changes should be in `models` and `src/pipeline.py`
11
+ - Ensure the entire repository (excluding dependencies and HuggingFace models) is under 16MB
12
+
13
+ For testing, you need a docker container with pytorch and ubuntu 22.04.
14
+ You can download your listed dependencies with `uv`, installed with:
15
+ ```bash
16
+ pipx ensurepath
17
+ pipx install uv
18
+ ```
19
+ You can then relock with `uv lock`, and then run with `uv run start_inference`
pyproject.toml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [build-system]
2
+ requires = ["setuptools >= 75.0"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [project]
6
+ name = "flux-schnell-edge-inference"
7
+ description = "An edge-maxxing model submission for the 4090 Flux contest"
8
+ requires-python = ">=3.10,<3.13"
9
+ version = "8"
10
+ dependencies = [
11
+ "diffusers==0.31.0",
12
+ "transformers==4.46.2",
13
+ "accelerate==1.1.0",
14
+ "omegaconf==2.3.0",
15
+ "torch==2.5.1",
16
+ "protobuf==5.28.3",
17
+ "sentencepiece==0.2.0",
18
+ "torchao==0.6.1",
19
+ "hf_transfer==0.1.8",
20
+ "edge-maxxing-pipelines @ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines",
21
+ ]
22
+
23
+ [[tool.edge-maxxing.models]]
24
+ repository = "jokerbit/flux.1-schnell-Robert-int8wo"
25
+ revision = "5ef0012f11a863e5111ec56540302a023bc8587b"
26
+
27
+
28
+ [[tool.edge-maxxing.models]]
29
+ repository = "madebyollin/taef1"
30
+ revision = "2d552378e58c9c94201075708d7de4e1163b2689"
31
+
32
+
33
+ [project.scripts]
34
+ start_inference = "main:main"
src/main.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from io import BytesIO
2
+ from multiprocessing.connection import Listener
3
+ from os import chmod, remove
4
+ from os.path import abspath, exists
5
+ from pathlib import Path
6
+
7
+ from PIL.JpegImagePlugin import JpegImageFile
8
+ from pipelines.models import TextToImageRequest
9
+ import torch
10
+ from pipeline import load_pipeline, infer
11
+
12
+ SOCKET = abspath(Path(__file__).parent.parent / "inferences.sock")
13
+
14
+
15
+ def main():
16
+ print(f"Loading pipeline")
17
+ pipeline = load_pipeline()
18
+ generator = torch.Generator(pipeline.device)
19
+ print(f"Pipeline loaded, creating socket at '{SOCKET}'")
20
+
21
+ if exists(SOCKET):
22
+ remove(SOCKET)
23
+
24
+ with Listener(SOCKET) as listener:
25
+ chmod(SOCKET, 0o777)
26
+
27
+ print(f"Awaiting connections")
28
+ with listener.accept() as connection:
29
+ print(f"Connected")
30
+
31
+ while True:
32
+ try:
33
+ request = TextToImageRequest.model_validate_json(connection.recv_bytes().decode("utf-8"))
34
+ except EOFError:
35
+ print(f"Inference socket exiting")
36
+
37
+ return
38
+
39
+ image = infer(request, pipeline, generator.manual_seed(request.seed))
40
+
41
+ data = BytesIO()
42
+ image.save(data, format=JpegImageFile.format)
43
+
44
+ packet = data.getvalue()
45
+
46
+ connection.send_bytes(packet)
47
+
48
+
49
+ if __name__ == '__main__':
50
+ main()
src/pipeline.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gc
2
+ import os
3
+ from typing import TypeAlias
4
+
5
+ import torch
6
+ from PIL.Image import Image
7
+ from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, AutoencoderTiny
8
+ from huggingface_hub.constants import HF_HUB_CACHE
9
+ from pipelines.models import TextToImageRequest
10
+ from torch import Generator
11
+ from torchao.quantization import quantize_, int8_weight_only
12
+ from transformers import T5EncoderModel, CLIPTextModel
13
+
14
+
15
+ Pipeline: TypeAlias = FluxPipeline
16
+ torch.backends.cudnn.benchmark = True
17
+
18
+ CHECKPOINT = "jokerbit/flux.1-schnell-Robert-int8wo"
19
+ REVISION = "5ef0012f11a863e5111ec56540302a023bc8587b"
20
+
21
+ TinyVAE = "madebyollin/taef1"
22
+ TinyVAE_REV = "2d552378e58c9c94201075708d7de4e1163b2689"
23
+
24
+
25
+ def load_pipeline() -> Pipeline:
26
+ path = os.path.join(HF_HUB_CACHE, "models--jokerbit--flux.1-schnell-Robert-int8wo/snapshots/5ef0012f11a863e5111ec56540302a023bc8587b/transformer")
27
+ transformer = FluxTransformer2DModel.from_pretrained(
28
+ path,
29
+ use_safetensors=False,
30
+ local_files_only=True,
31
+ torch_dtype=torch.bfloat16)
32
+ vae = AutoencoderTiny.from_pretrained(
33
+ TinyVAE,
34
+ revision=TinyVAE_REV,
35
+ local_files_only=True,
36
+ torch_dtype=torch.bfloat16)
37
+ pipeline = FluxPipeline.from_pretrained(
38
+ CHECKPOINT,
39
+ revision=REVISION,
40
+ transformer=transformer,
41
+ vae=vae,
42
+ local_files_only=True,
43
+ torch_dtype=torch.bfloat16,
44
+ ).to("cuda")
45
+
46
+ # pipeline.vae.to(memory_format=torch.channels_last)
47
+ quantize_(pipeline.vae, int8_weight_only())
48
+ # pipeline.vae = torch.compile(pipeline.vae, mode="reduce-overhead")
49
+ # pipeline.to("cuda")
50
+ for _ in range(2):
51
+ pipeline("cat", num_inference_steps=4)
52
+
53
+ return pipeline
54
+
55
+ @torch.inference_mode()
56
+ def infer(request: TextToImageRequest, pipeline: Pipeline, generator: torch.Generator) -> Image:
57
+
58
+ return pipeline(
59
+ request.prompt,
60
+ generator=generator,
61
+ guidance_scale=0.0,
62
+ num_inference_steps=4,
63
+ max_sequence_length=256,
64
+ height=request.height,
65
+ width=request.width,
66
+ ).images[0]
67
+
68
+
69
+ if __name__ == "__main__":
70
+ from time import perf_counter
71
+ PROMPT = 'martyr, semiconformity, peregrination, quip, twineless, emotionless, tawa, depickle'
72
+ request = TextToImageRequest(prompt=PROMPT,
73
+ height=None,
74
+ width=None,
75
+ seed=666)
76
+ start_time = perf_counter()
77
+ pipe_ = load_pipeline()
78
+ stop_time = perf_counter()
79
+ print(f"Pipeline is loaded in {stop_time - start_time}s")
80
+ for _ in range(4):
81
+ start_time = perf_counter()
82
+ infer(request, pipe_)
83
+ stop_time = perf_counter()
84
+ print(f"Request in {stop_time - start_time}s")
uv.lock ADDED
The diff for this file is too large to render. See raw diff