Upload folder using huggingface_hub
Browse files- README.md +19 -0
- pyproject.toml +34 -0
- src/main.py +50 -0
- src/pipeline.py +84 -0
- uv.lock +0 -0
README.md
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flux-schnell-edge-inference
|
2 |
+
|
3 |
+
This holds the baseline for the FLUX Schnel NVIDIA GeForce RTX 4090 contest, which can be forked freely and optimized
|
4 |
+
|
5 |
+
Some recommendations are as follows:
|
6 |
+
- Installing dependencies should be done in `pyproject.toml`, including git dependencies
|
7 |
+
- HuggingFace models should be specified in the `models` array in the `pyproject.toml` file, and will be downloaded before benchmarking
|
8 |
+
- The pipeline does **not** have internet access so all dependencies and models must be included in the `pyproject.toml`
|
9 |
+
- Compiled models should be hosted on HuggingFace and included in the `models` array in the `pyproject.toml` (rather than compiling during loading). Loading time matters far more than file sizes
|
10 |
+
- Avoid changing `src/main.py`, as that includes mostly protocol logic. Most changes should be in `models` and `src/pipeline.py`
|
11 |
+
- Ensure the entire repository (excluding dependencies and HuggingFace models) is under 16MB
|
12 |
+
|
13 |
+
For testing, you need a docker container with pytorch and ubuntu 22.04.
|
14 |
+
You can download your listed dependencies with `uv`, installed with:
|
15 |
+
```bash
|
16 |
+
pipx ensurepath
|
17 |
+
pipx install uv
|
18 |
+
```
|
19 |
+
You can then relock with `uv lock`, and then run with `uv run start_inference`
|
pyproject.toml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[build-system]
|
2 |
+
requires = ["setuptools >= 75.0"]
|
3 |
+
build-backend = "setuptools.build_meta"
|
4 |
+
|
5 |
+
[project]
|
6 |
+
name = "flux-schnell-edge-inference"
|
7 |
+
description = "An edge-maxxing model submission for the 4090 Flux contest"
|
8 |
+
requires-python = ">=3.10,<3.13"
|
9 |
+
version = "8"
|
10 |
+
dependencies = [
|
11 |
+
"diffusers==0.31.0",
|
12 |
+
"transformers==4.46.2",
|
13 |
+
"accelerate==1.1.0",
|
14 |
+
"omegaconf==2.3.0",
|
15 |
+
"torch==2.5.1",
|
16 |
+
"protobuf==5.28.3",
|
17 |
+
"sentencepiece==0.2.0",
|
18 |
+
"torchao==0.6.1",
|
19 |
+
"hf_transfer==0.1.8",
|
20 |
+
"edge-maxxing-pipelines @ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines",
|
21 |
+
]
|
22 |
+
|
23 |
+
[[tool.edge-maxxing.models]]
|
24 |
+
repository = "jokerbit/flux.1-schnell-Robert-int8wo"
|
25 |
+
revision = "5ef0012f11a863e5111ec56540302a023bc8587b"
|
26 |
+
|
27 |
+
|
28 |
+
[[tool.edge-maxxing.models]]
|
29 |
+
repository = "madebyollin/taef1"
|
30 |
+
revision = "2d552378e58c9c94201075708d7de4e1163b2689"
|
31 |
+
|
32 |
+
|
33 |
+
[project.scripts]
|
34 |
+
start_inference = "main:main"
|
src/main.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
from multiprocessing.connection import Listener
|
3 |
+
from os import chmod, remove
|
4 |
+
from os.path import abspath, exists
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
from PIL.JpegImagePlugin import JpegImageFile
|
8 |
+
from pipelines.models import TextToImageRequest
|
9 |
+
import torch
|
10 |
+
from pipeline import load_pipeline, infer
|
11 |
+
|
12 |
+
SOCKET = abspath(Path(__file__).parent.parent / "inferences.sock")
|
13 |
+
|
14 |
+
|
15 |
+
def main():
|
16 |
+
print(f"Loading pipeline")
|
17 |
+
pipeline = load_pipeline()
|
18 |
+
generator = torch.Generator(pipeline.device)
|
19 |
+
print(f"Pipeline loaded, creating socket at '{SOCKET}'")
|
20 |
+
|
21 |
+
if exists(SOCKET):
|
22 |
+
remove(SOCKET)
|
23 |
+
|
24 |
+
with Listener(SOCKET) as listener:
|
25 |
+
chmod(SOCKET, 0o777)
|
26 |
+
|
27 |
+
print(f"Awaiting connections")
|
28 |
+
with listener.accept() as connection:
|
29 |
+
print(f"Connected")
|
30 |
+
|
31 |
+
while True:
|
32 |
+
try:
|
33 |
+
request = TextToImageRequest.model_validate_json(connection.recv_bytes().decode("utf-8"))
|
34 |
+
except EOFError:
|
35 |
+
print(f"Inference socket exiting")
|
36 |
+
|
37 |
+
return
|
38 |
+
|
39 |
+
image = infer(request, pipeline, generator.manual_seed(request.seed))
|
40 |
+
|
41 |
+
data = BytesIO()
|
42 |
+
image.save(data, format=JpegImageFile.format)
|
43 |
+
|
44 |
+
packet = data.getvalue()
|
45 |
+
|
46 |
+
connection.send_bytes(packet)
|
47 |
+
|
48 |
+
|
49 |
+
if __name__ == '__main__':
|
50 |
+
main()
|
src/pipeline.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
import os
|
3 |
+
from typing import TypeAlias
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from PIL.Image import Image
|
7 |
+
from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, AutoencoderTiny
|
8 |
+
from huggingface_hub.constants import HF_HUB_CACHE
|
9 |
+
from pipelines.models import TextToImageRequest
|
10 |
+
from torch import Generator
|
11 |
+
from torchao.quantization import quantize_, int8_weight_only
|
12 |
+
from transformers import T5EncoderModel, CLIPTextModel
|
13 |
+
|
14 |
+
|
15 |
+
Pipeline: TypeAlias = FluxPipeline
|
16 |
+
torch.backends.cudnn.benchmark = True
|
17 |
+
|
18 |
+
CHECKPOINT = "jokerbit/flux.1-schnell-Robert-int8wo"
|
19 |
+
REVISION = "5ef0012f11a863e5111ec56540302a023bc8587b"
|
20 |
+
|
21 |
+
TinyVAE = "madebyollin/taef1"
|
22 |
+
TinyVAE_REV = "2d552378e58c9c94201075708d7de4e1163b2689"
|
23 |
+
|
24 |
+
|
25 |
+
def load_pipeline() -> Pipeline:
|
26 |
+
path = os.path.join(HF_HUB_CACHE, "models--jokerbit--flux.1-schnell-Robert-int8wo/snapshots/5ef0012f11a863e5111ec56540302a023bc8587b/transformer")
|
27 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
28 |
+
path,
|
29 |
+
use_safetensors=False,
|
30 |
+
local_files_only=True,
|
31 |
+
torch_dtype=torch.bfloat16)
|
32 |
+
vae = AutoencoderTiny.from_pretrained(
|
33 |
+
TinyVAE,
|
34 |
+
revision=TinyVAE_REV,
|
35 |
+
local_files_only=True,
|
36 |
+
torch_dtype=torch.bfloat16)
|
37 |
+
pipeline = FluxPipeline.from_pretrained(
|
38 |
+
CHECKPOINT,
|
39 |
+
revision=REVISION,
|
40 |
+
transformer=transformer,
|
41 |
+
vae=vae,
|
42 |
+
local_files_only=True,
|
43 |
+
torch_dtype=torch.bfloat16,
|
44 |
+
).to("cuda")
|
45 |
+
|
46 |
+
# pipeline.vae.to(memory_format=torch.channels_last)
|
47 |
+
quantize_(pipeline.vae, int8_weight_only())
|
48 |
+
# pipeline.vae = torch.compile(pipeline.vae, mode="reduce-overhead")
|
49 |
+
# pipeline.to("cuda")
|
50 |
+
for _ in range(2):
|
51 |
+
pipeline("cat", num_inference_steps=4)
|
52 |
+
|
53 |
+
return pipeline
|
54 |
+
|
55 |
+
@torch.inference_mode()
|
56 |
+
def infer(request: TextToImageRequest, pipeline: Pipeline, generator: torch.Generator) -> Image:
|
57 |
+
|
58 |
+
return pipeline(
|
59 |
+
request.prompt,
|
60 |
+
generator=generator,
|
61 |
+
guidance_scale=0.0,
|
62 |
+
num_inference_steps=4,
|
63 |
+
max_sequence_length=256,
|
64 |
+
height=request.height,
|
65 |
+
width=request.width,
|
66 |
+
).images[0]
|
67 |
+
|
68 |
+
|
69 |
+
if __name__ == "__main__":
|
70 |
+
from time import perf_counter
|
71 |
+
PROMPT = 'martyr, semiconformity, peregrination, quip, twineless, emotionless, tawa, depickle'
|
72 |
+
request = TextToImageRequest(prompt=PROMPT,
|
73 |
+
height=None,
|
74 |
+
width=None,
|
75 |
+
seed=666)
|
76 |
+
start_time = perf_counter()
|
77 |
+
pipe_ = load_pipeline()
|
78 |
+
stop_time = perf_counter()
|
79 |
+
print(f"Pipeline is loaded in {stop_time - start_time}s")
|
80 |
+
for _ in range(4):
|
81 |
+
start_time = perf_counter()
|
82 |
+
infer(request, pipe_)
|
83 |
+
stop_time = perf_counter()
|
84 |
+
print(f"Request in {stop_time - start_time}s")
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|