joaoalvarenga
commited on
Commit
·
30df0c3
1
Parent(s):
2598b16
Upload fine-tuning-example.ipynb
Browse files- fine-tuning-example.ipynb +325 -0
fine-tuning-example.ipynb
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "e13eff4e-c134-4dac-9523-07b297164250",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# Example of Fine-tuning 176 billion Bloom with 8-bit weights\n",
|
9 |
+
"\n",
|
10 |
+
"This notebook shows an example of how to fine tune Bloom with Low Rank Adapters. Heavily inspired by [Hivemind's work](https://colab.research.google.com/drive/1ft6wQU0BhqG5PRlwgaZJv2VukKKjU4Es)"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": null,
|
16 |
+
"id": "699e94eb-3ce1-4788-999b-fb6d593ba7e9",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"!pip install transformers==4.20.1\n",
|
21 |
+
"!pip install bitsandbytes-cuda110\n",
|
22 |
+
"!pip install datasets"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "markdown",
|
27 |
+
"id": "0afea72c-691d-4719-a84a-663f1891af6e",
|
28 |
+
"metadata": {},
|
29 |
+
"source": [
|
30 |
+
"### Load and convert original Bloom structure to 8-bit LoRA\n",
|
31 |
+
"\n",
|
32 |
+
"You can load an already compressed 8-bit version of Bloom from [joaoalvarenga/bloom-8bit](https://huggingface.co/joaoalvarenga/bloom-8bit), but first we need to make some adaptations into original model structure. Some of the following code is an adaptation from [Hivemind's GPT-J 8-bit fine-tuning notebook](https://colab.research.google.com/drive/1ft6wQU0BhqG5PRlwgaZJv2VukKKjU4Es)."
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "code",
|
37 |
+
"execution_count": null,
|
38 |
+
"id": "aa5f4118-d4d9-474f-ac36-acaadb920c1f",
|
39 |
+
"metadata": {},
|
40 |
+
"outputs": [],
|
41 |
+
"source": [
|
42 |
+
"import transformers\n",
|
43 |
+
"\n",
|
44 |
+
"import torch\n",
|
45 |
+
"import torch.nn.functional as F\n",
|
46 |
+
"from torch import nn\n",
|
47 |
+
"from torch.cuda.amp import custom_fwd, custom_bwd\n",
|
48 |
+
"\n",
|
49 |
+
"from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise\n",
|
50 |
+
"\n",
|
51 |
+
"from tqdm.auto import tqdm"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": null,
|
57 |
+
"id": "cc4f262e-70de-4a06-a5a6-52d1cd5223d3",
|
58 |
+
"metadata": {},
|
59 |
+
"outputs": [],
|
60 |
+
"source": [
|
61 |
+
"class FrozenBNBLinear(nn.Module):\n",
|
62 |
+
" def __init__(self, weight, absmax, code, bias=None):\n",
|
63 |
+
" assert isinstance(bias, nn.Parameter) or bias is None\n",
|
64 |
+
" super().__init__()\n",
|
65 |
+
" self.out_features, self.in_features = weight.shape\n",
|
66 |
+
" self.register_buffer(\"weight\", weight.requires_grad_(False))\n",
|
67 |
+
" self.register_buffer(\"absmax\", absmax.requires_grad_(False))\n",
|
68 |
+
" self.register_buffer(\"code\", code.requires_grad_(False))\n",
|
69 |
+
" self.adapter = None\n",
|
70 |
+
" self.bias = bias\n",
|
71 |
+
" \n",
|
72 |
+
" def forward(self, input):\n",
|
73 |
+
" output = DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias)\n",
|
74 |
+
" if self.adapter:\n",
|
75 |
+
" output += self.adapter(input)\n",
|
76 |
+
" return output\n",
|
77 |
+
" \n",
|
78 |
+
" @classmethod\n",
|
79 |
+
" def from_linear(cls, linear: nn.Linear) -> \"FrozenBNBLinear\":\n",
|
80 |
+
" weights_int8, state = quantize_blockise_lowmemory(linear.weight)\n",
|
81 |
+
" return cls(weights_int8, *state, linear.bias)\n",
|
82 |
+
" \n",
|
83 |
+
" def __repr__(self):\n",
|
84 |
+
" return f\"{self.__class__.__name__}({self.in_features}, {self.out_features})\"\n",
|
85 |
+
" \n",
|
86 |
+
" \n",
|
87 |
+
"class DequantizeAndLinear(torch.autograd.Function): \n",
|
88 |
+
" @staticmethod\n",
|
89 |
+
" @custom_fwd\n",
|
90 |
+
" def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor,\n",
|
91 |
+
" absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor):\n",
|
92 |
+
" weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)\n",
|
93 |
+
" ctx.save_for_backward(input, weights_quantized, absmax, code)\n",
|
94 |
+
" ctx._has_bias = bias is not None\n",
|
95 |
+
" return F.linear(input, weights_deq, bias)\n",
|
96 |
+
" \n",
|
97 |
+
" @staticmethod\n",
|
98 |
+
" @custom_bwd\n",
|
99 |
+
" def backward(ctx, grad_output: torch.Tensor):\n",
|
100 |
+
" assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3]\n",
|
101 |
+
" input, weights_quantized, absmax, code = ctx.saved_tensors\n",
|
102 |
+
" # grad_output: [*batch, out_features]\n",
|
103 |
+
" weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)\n",
|
104 |
+
" grad_input = grad_output @ weights_deq\n",
|
105 |
+
" grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None\n",
|
106 |
+
" return grad_input, None, None, None, grad_bias\n",
|
107 |
+
" \n",
|
108 |
+
" \n",
|
109 |
+
"class FrozenBNBEmbedding(nn.Module):\n",
|
110 |
+
" def __init__(self, weight, absmax, code):\n",
|
111 |
+
" super().__init__()\n",
|
112 |
+
" self.num_embeddings, self.embedding_dim = weight.shape\n",
|
113 |
+
" self.register_buffer(\"weight\", weight.requires_grad_(False))\n",
|
114 |
+
" self.register_buffer(\"absmax\", absmax.requires_grad_(False))\n",
|
115 |
+
" self.register_buffer(\"code\", code.requires_grad_(False))\n",
|
116 |
+
" self.adapter = None\n",
|
117 |
+
" \n",
|
118 |
+
" def forward(self, input, **kwargs):\n",
|
119 |
+
" with torch.no_grad():\n",
|
120 |
+
" # note: both quantuized weights and input indices are *not* differentiable\n",
|
121 |
+
" weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code)\n",
|
122 |
+
" output = F.embedding(input, weight_deq, **kwargs)\n",
|
123 |
+
" if self.adapter:\n",
|
124 |
+
" output += self.adapter(input)\n",
|
125 |
+
" return output \n",
|
126 |
+
" \n",
|
127 |
+
" @classmethod\n",
|
128 |
+
" def from_embedding(cls, embedding: nn.Embedding) -> \"FrozenBNBEmbedding\":\n",
|
129 |
+
" weights_int8, state = quantize_blockise_lowmemory(embedding.weight)\n",
|
130 |
+
" return cls(weights_int8, *state)\n",
|
131 |
+
" \n",
|
132 |
+
" def __repr__(self):\n",
|
133 |
+
" return f\"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})\"\n",
|
134 |
+
" \n",
|
135 |
+
" \n",
|
136 |
+
"def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20):\n",
|
137 |
+
" assert chunk_size % 4096 == 0\n",
|
138 |
+
" code = None\n",
|
139 |
+
" chunks = []\n",
|
140 |
+
" absmaxes = []\n",
|
141 |
+
" flat_tensor = matrix.view(-1)\n",
|
142 |
+
" for i in range((matrix.numel() - 1) // chunk_size + 1):\n",
|
143 |
+
" input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone()\n",
|
144 |
+
" quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code)\n",
|
145 |
+
" chunks.append(quantized_chunk)\n",
|
146 |
+
" absmaxes.append(absmax_chunk)\n",
|
147 |
+
" \n",
|
148 |
+
" matrix_i8 = torch.cat(chunks).reshape_as(matrix)\n",
|
149 |
+
" absmax = torch.cat(absmaxes)\n",
|
150 |
+
" return matrix_i8, (absmax, code)\n",
|
151 |
+
"\n",
|
152 |
+
"\n",
|
153 |
+
"def convert_to_int8(model):\n",
|
154 |
+
" \"\"\"Convert linear and embedding modules to 8-bit with optional adapters\"\"\"\n",
|
155 |
+
" for module in list(model.modules()):\n",
|
156 |
+
" for name, child in module.named_children():\n",
|
157 |
+
" if isinstance(child, nn.Linear):\n",
|
158 |
+
" print(name, child)\n",
|
159 |
+
" setattr( \n",
|
160 |
+
" module,\n",
|
161 |
+
" name,\n",
|
162 |
+
" FrozenBNBLinear(\n",
|
163 |
+
" weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8),\n",
|
164 |
+
" absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),\n",
|
165 |
+
" code=torch.zeros(256),\n",
|
166 |
+
" bias=child.bias,\n",
|
167 |
+
" ),\n",
|
168 |
+
" )\n",
|
169 |
+
" elif isinstance(child, nn.Embedding):\n",
|
170 |
+
" setattr(\n",
|
171 |
+
" module,\n",
|
172 |
+
" name,\n",
|
173 |
+
" FrozenBNBEmbedding(\n",
|
174 |
+
" weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8),\n",
|
175 |
+
" absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),\n",
|
176 |
+
" code=torch.zeros(256),\n",
|
177 |
+
" )\n",
|
178 |
+
" )"
|
179 |
+
]
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"cell_type": "code",
|
183 |
+
"execution_count": null,
|
184 |
+
"id": "f4673d4c-0f4e-482e-ac04-b7389397af6e",
|
185 |
+
"metadata": {},
|
186 |
+
"outputs": [],
|
187 |
+
"source": [
|
188 |
+
"class BloomBlock(transformers.models.bloom.modeling_bloom.BloomBlock):\n",
|
189 |
+
" def __init__(self, config, layer_number=None):\n",
|
190 |
+
" super().__init__(config, layer_number)\n",
|
191 |
+
"\n",
|
192 |
+
" convert_to_int8(self.self_attention)\n",
|
193 |
+
" convert_to_int8(self.mlp)\n",
|
194 |
+
"\n",
|
195 |
+
"\n",
|
196 |
+
"class BloomModel(transformers.models.bloom.modeling_bloom.BloomModel):\n",
|
197 |
+
" def __init__(self, config):\n",
|
198 |
+
" super().__init__(config)\n",
|
199 |
+
" convert_to_int8(self)\n",
|
200 |
+
" \n",
|
201 |
+
"\n",
|
202 |
+
"class BloomForCausalLM(transformers.models.bloom.modeling_bloom.BloomForCausalLM):\n",
|
203 |
+
" def __init__(self, config):\n",
|
204 |
+
" super().__init__(config)\n",
|
205 |
+
" convert_to_int8(self)\n",
|
206 |
+
" \n",
|
207 |
+
"transformers.models.bloom.modeling_bloom.BloomBlock = BloomBlock"
|
208 |
+
]
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"cell_type": "code",
|
212 |
+
"execution_count": null,
|
213 |
+
"id": "eca11b11-9b0b-4958-89f4-401f7a2cac0e",
|
214 |
+
"metadata": {},
|
215 |
+
"outputs": [],
|
216 |
+
"source": [
|
217 |
+
"from transformers import BloomForCausalLM \n",
|
218 |
+
"tokenizer = transformers.AutoTokenizer.from_pretrained('joaoalvarenga/bloom-8bit')\n",
|
219 |
+
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
|
220 |
+
"model = BloomForCausalLM.from_pretrained('joaoalvarenga/bloom-8bit', low_cpu_mem_usage=True)\n",
|
221 |
+
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
|
222 |
+
"model.to(device)"
|
223 |
+
]
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"cell_type": "markdown",
|
227 |
+
"id": "82ea942b-7fcf-4bbc-adb9-be0bbd98b9f8",
|
228 |
+
"metadata": {},
|
229 |
+
"source": [
|
230 |
+
"### Fine-tune and save model"
|
231 |
+
]
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"cell_type": "code",
|
235 |
+
"execution_count": null,
|
236 |
+
"id": "26cacf36-56f7-4f9c-b975-33dd34b1ff9c",
|
237 |
+
"metadata": {},
|
238 |
+
"outputs": [],
|
239 |
+
"source": [
|
240 |
+
"def add_adapters(model, adapter_dim=16):\n",
|
241 |
+
" assert adapter_dim > 0\n",
|
242 |
+
"\n",
|
243 |
+
" for module in model.modules():\n",
|
244 |
+
" if isinstance(module, FrozenBNBLinear):\n",
|
245 |
+
" module.adapter = nn.Sequential(\n",
|
246 |
+
" nn.Linear(module.in_features, adapter_dim, bias=False),\n",
|
247 |
+
" nn.Linear(adapter_dim, module.out_features, bias=False),\n",
|
248 |
+
" )\n",
|
249 |
+
" nn.init.zeros_(module.adapter[1].weight)\n",
|
250 |
+
" elif isinstance(module, FrozenBNBEmbedding):\n",
|
251 |
+
" module.adapter = nn.Sequential(\n",
|
252 |
+
" nn.Embedding(module.num_embeddings, adapter_dim),\n",
|
253 |
+
" nn.Linear(adapter_dim, module.embedding_dim, bias=False),\n",
|
254 |
+
" )\n",
|
255 |
+
" nn.init.zeros_(module.adapter[1].weight)\n",
|
256 |
+
"\n",
|
257 |
+
"add_adapters(model)\n",
|
258 |
+
"model.to(device)"
|
259 |
+
]
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"cell_type": "code",
|
263 |
+
"execution_count": null,
|
264 |
+
"id": "4e293eb3-979a-46d7-97b8-cde296f45da8",
|
265 |
+
"metadata": {},
|
266 |
+
"outputs": [],
|
267 |
+
"source": [
|
268 |
+
"from datasets import load_dataset\n",
|
269 |
+
"from bitsandbytes.optim import Adam8bit\n",
|
270 |
+
"\n",
|
271 |
+
"model.gradient_checkpointing_enable()\n",
|
272 |
+
"\n",
|
273 |
+
"wikisql = load_dataset(\"wikisql\", streaming=True)\n",
|
274 |
+
"optimizer = Adam8bit(model.parameters(), lr=1e-5)\n",
|
275 |
+
"\n",
|
276 |
+
"with torch.cuda.amp.autocast():\n",
|
277 |
+
" for row in tqdm(wikisql['train']):\n",
|
278 |
+
"\n",
|
279 |
+
" batch = tokenizer(row['question'] + row['sql']['human_readable'], truncation=True, max_length=128, return_tensors='pt')\n",
|
280 |
+
" batch = {k: v.cuda() for k, v in batch.items()}\n",
|
281 |
+
"\n",
|
282 |
+
" out = gpt.forward(**batch,)\n",
|
283 |
+
"\n",
|
284 |
+
" loss = F.cross_entropy(out.logits[:, :-1, :].flatten(0, -2), batch['input_ids'][:, 1:].flatten(),\n",
|
285 |
+
" reduction='mean')\n",
|
286 |
+
" print(loss)\n",
|
287 |
+
" loss.backward()\n",
|
288 |
+
"\n",
|
289 |
+
" optimizer.step()\n",
|
290 |
+
" optimizer.zero_grad()"
|
291 |
+
]
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"cell_type": "code",
|
295 |
+
"execution_count": null,
|
296 |
+
"id": "4e2251f6-1a5c-4193-b971-0840d6d59c32",
|
297 |
+
"metadata": {},
|
298 |
+
"outputs": [],
|
299 |
+
"source": [
|
300 |
+
"model.save_pretrained('bloom-8bit-fine-tuned')"
|
301 |
+
]
|
302 |
+
}
|
303 |
+
],
|
304 |
+
"metadata": {
|
305 |
+
"kernelspec": {
|
306 |
+
"display_name": "Python 3 (ipykernel)",
|
307 |
+
"language": "python",
|
308 |
+
"name": "python3"
|
309 |
+
},
|
310 |
+
"language_info": {
|
311 |
+
"codemirror_mode": {
|
312 |
+
"name": "ipython",
|
313 |
+
"version": 3
|
314 |
+
},
|
315 |
+
"file_extension": ".py",
|
316 |
+
"mimetype": "text/x-python",
|
317 |
+
"name": "python",
|
318 |
+
"nbconvert_exporter": "python",
|
319 |
+
"pygments_lexer": "ipython3",
|
320 |
+
"version": "3.9.12"
|
321 |
+
}
|
322 |
+
},
|
323 |
+
"nbformat": 4,
|
324 |
+
"nbformat_minor": 5
|
325 |
+
}
|