--- base_model: microsoft/dit-base tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: doc-img-classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.3483606557377049 --- # doc-img-classification This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0820 - Accuracy: 0.3484 - Weighted f1: 0.2183 - Micro f1: 0.3484 - Macro f1: 0.2173 - Weighted recall: 0.3484 - Micro recall: 0.3484 - Macro recall: 0.3545 - Weighted precision: 0.4016 - Micro precision: 0.3484 - Macro precision: 0.3764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision | |:-------------:|:------:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 1.7064 | 0.9855 | 17 | 1.0820 | 0.3484 | 0.2183 | 0.3484 | 0.2173 | 0.3484 | 0.3484 | 0.3545 | 0.4016 | 0.3484 | 0.3764 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1